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1 Introduction

Differences-in-differences (DiD) is a widely used method to estimate treatment effects
in applied economics. The conventional approach compares the average outcome of a
treatment group with the average outcome of a control group before and after the imple-
mentation of the program of interest. For this estimator to identify the causal effect of the
program, one must assume that, in the absence of the treatment, the outcomes of both
groups would have followed parallel trends over time, at least conditional on observable
pretreatment covariates (Sant’Anna and Zhao, 2020). Unfortunately, it is not always pos-
sible to observe all possible confounders to apply this framework plausibly. Researchers
therefore often opt for an instrumental variable approach. An instrument is any form of
random assignment to the treatment, and the IV estimator is then more or less informa-
tive depending on the degree and type of compliance (see Athey and Imbens, 2017, for a
review).

In this paper, we propose a novel approach to be used with unobserved heterogeneity
and heterogeneous treatment effects. We exploit recent advances in the identification of
latent variables models (see Hu, 2017, for a survey) to develop a framework where the
whole distribution of heterogeneous treatment effects is identified. To this end, we as-
sume that unobserved heterogeneity can be well approximated by a discrete distribution.
Discrete mixing is not essential (Hu and Shum, 2012), but simplifies both identification
and estimation. We show that the components of the finite mixture are identified if there
exists a variable that affects the treatment probability without directly affecting the out-
come conditional on unobserved individual types. This variable can be assigned by a
lottery (as in the classical intention-to-treat framework) or by an agent (a policymaker,
or a firm in our application). In many cases, the treatment assignment is not randomized
and may be correlated with individual characteristics that are unobserved by the econo-
metrician. Although such setups are quite common, they have received little attention in
the econometric literature. Our method aims to fill this gap.

Once the distribution of the treatment effect conditional on unobservable types has
been identified, the conventional monotonicity assumption is no longer needed, nor is
the common trend assumption. We can estimate treatment effects conditional on type,
and then choose the weights as we want for aggregation across types. But there is no free
lunch; the identification of our model requires satisfying completeness assumptions similar
to those in the nonparametric IV literature (Newey and Powell, 2003; Newey, 2013). In
particular, we need sufficient variation across unobserved types in the distribution of the
outcome and the instrument, separately for the treated and the untreated.

Using linked employee-employer survey data matched with administrative data on
wages, we apply our model to the estimation of the impact of job training on wages. We use
data on whether or not the worker has received information about training opportunities as
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a pretreatment assignment (“intention to treat”). The availability of repeated observations
of the outcome variable is crucial for identification, and to model outcome dynamics. As
we observe wages more than twice, we allow for the outcome process to be autoregressive
by modeling it as a Markovian process.

We estimate a flexible parametric specification using the Expectation-Maximization
(EM) algorithm. Standard errors are obtained by bootstrap. The results show that treat-
ment effects vary with type. All three ways of aggregating conditional ATEs (aggregate
ATE, ATT, and LATE) yield similar estimates of 4% in the year of training, falling to
under 2% in the year after training. We conclude that on-the-job training has a limited
effect on wages, which does not last. The biases resulting from heterogeneous trends are
found to be of a similar magnitude to the aggregate treatment effects. We also find that
a sizable share of the bias on the IV estimator (around 1%-2%) reflects small-sample
deviations from assumed restrictions in the population.

Our framework should be viewed as an alternative to the DiD framework (OLS or
IV). We solve the nonparametric identification problem by assuming that the source of
confoundedness lies in the presence of unobserved heterogeneity that we assume fixed
over time. The DiD framework makes other assumptions. Athey and Imbens (2006) state
them clearly: First, there should be a unique stochastic index determining all counter-
factual outcomes. Second, the index should be a stationary stochastic process. The fixed
unobserved heterogeneity assumption is a strong restriction. However, it is relatively
straightforward to extend our framework to the hidden Markov case. But, more out-
come observations would be required (see Hu and Shum, 2012), which is a problem in our
application because increasing the number of periods also increases the risk of re-training.

The benefits of panel data in difference-in-differences contexts are studied in Bon-
homme and Sauder (2011); Freyaldenhoven et al. (2019) and in Callaway and Li (2019);
Li and Li (2019); Sant’Anna and Zhao (2020). These papers maintain the common trend
assumption, except for the first one. As far as we know, Bonhomme and Sauder (2011)
is the only paper that replaces a standard common trend assumption with a structural
assumption on the way unobserved heterogeneity determines outcomes. Specifically, they
assume a linear factor structure and solve the (semiparametric) identification problem
using nonparametric deconvolution techniques.1 Freyaldenhoven et al. (2019) share the
factor structure of Bonhomme and Sauder’s framework and some identification ideas.2

We depart from the linear factor structure, and consider a more general finite mixture
allowing the outcome variance to be conditional on unobserved heterogeneity.

1More precisely, the special case studied in Section II.B does satisfy the common trend assumption,
since, by taking differences in outcomes, the fixed effect disappears. In Section II.C, they allow for
different factor loadings on the latent factor, but these factor loadings are assumed independent of the
treatment, which comes close to a common trend assumption.

2The pretreatment periods of Freyaldenhoven et al. play a similar role as the “instrument” of Bon-
homme and Sauder, as far as the identification of factor loadings is concerned.
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The rest of the paper proceeds as follows. We first conclude the introduction with
a discussion of the literature on training. Then, Section 2 presents the model. Section
3 discusses identification. Section 4 makes the links between our model’s estimates and
standard treatment effect parameters such as ATE, ATT, OLS and LATE. Section 5
describes our dataset and presents a preliminary, reduced-form econometric analysis using
standard econometric methods. Section 6 presents and discusses the results obtained with
our new framework. We finally conclude.

Literature on training. The literature on the effect of training (and active labor mar-
ket programs) is vast. Fialho et al. (2019) provide the most recent survey and exhaustive
evaluation of the different forms of adult learning — informal (on the job), non-formal
and formal (depending on whether the institution providing training is public or not) —
for various countries. The effect of non-formal training on wages is estimated between
13% and 30%, with or without controls respectively. When a control-function estima-
tor is used, the estimated effect of training remains high, around 11% on average, but
with a wide range across countries. Before Fialho et al. (2019), several other authors
had reviewed this literature (see Heckman et al. (1999); McCall et al. (2016) and the
meta-analyses of Card et al. (2010, 2018) and Haelermans and Borghans (2012)). See also
the classic paper by LaLonde (1986). The estimated impacts of training on wages and
productivity are generally found to be positive; the effects on the risk of unemployment
are often ambiguous.

Many of the contributions devoted to training programs are based on non-experimental
data with a panel structure and rely on fixed-effects estimators. Fixed-effects approaches
are used in the pioneering work of Ashenfelter (1978), in the contributions of (among
many others) Lynch (1992), on NLSY data; Booth (1993); Blundell et al. (1999), both on
British data; Krueger and Rouse (1998), on American firm-level data; Pischke (2001), on
German GSOEP data; Schoene (2004), on Norwegian data.

Few papers rely on instrumental variables, maybe because it is difficult to find con-
vincing instruments for participation in training programs (yet, see Bartel (1995); Parent
(1999); Abadie et al. (2002)). Some contributions control for selection in training using
Heckman’s two-stage estimator (e.g., LaLonde (1986); Booth (1993); Goux and Maurin
(2000)). A behavioral approach to training participation is explored in Caliendo et al.
(2016). Other contributions use matching estimators (Brodaty et al., 2001; Gerfin and
Lechner, 2002; Kluve et al., 2012).

A number of recent papers follow Abadie et al. (2002) and use randomized trials;
e.g., Lee (2009), Attanasio et al. (2011); Grip and Sauermann (2012); Ba et al. (2017),
Sandvik et al. (2021). The importance of the comparison group construction is illustrated
by Leuven and Oosterbeek (2008). They narrow down their comparison group to only
“workers who [were] willing to undertake training and whose employers [were] prepared
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to provide it, but did not attend the training course they wanted, due to some random
event” (Leuven and Oosterbeek, 2008, p. 426). This strict choice of comparison group
reduces the estimated coefficient on training to almost zero, down from between 5–15%
with less restrictive choices.3

Most papers consider the impact of training on wages and productivity. Human capital
theory suggests that, under conditions of perfect competition, employers should refuse to
pay for training. At least, they would refuse to finance general training, which is typically
portable, and would allow workers to quit the firm and find a job with a higher wage. But
under imperfectly competitive conditions, in particular, under asymmetric information
about workers’ abilities, it can be shown that the firm should be willing, either to subsidize
training, or to share the benefits of training with the worker, (see Acemoglu and Pischke,
1998, 1999). A number of papers use wage equations and production functions to test
this prediction and indeed find positive effects on both productivity and wages.4

There also exists a literature on transition and duration models, studying the effects of
training on the duration of employment and unemployment spells (see Ridder (1986), on
Dutch data; Gritz (1993), on NLSY data; Bonnal et al. (1997), on French data; Crepon
et al. (2009), using methods developed in Abbring and Berg (2003)).

Finally, an important question is to assess the importance and effects of unobserved
heterogeneity, as well as the dynamic structure of the impact of training (for recent
progress on these two fronts, see Rodriguez et al. (2018)). Our paper addresses these
questions within a nonparametric DiD framework that we describe below.

2 The model

We frame the model in terms of the application we are interested in — the effect of
training on wages — but the methodology could be used in other empirical setups.

We study a population of N workers indexed by i. The outcome variable is the
worker’s nominal hourly wage (in logs). It is denoted wit and is observed at the end
of three consecutive years indexed by t = 1, 2, 3. Some workers engage in a training
session, in which case di = 1 and di = 0 otherwise. Wage wi1 is observed before training,
and wi2, wi3 are observed after training (if training takes place at all). Our goal is to
measure the causal impact of training on wages in periods t = 2, 3. Treatment di is a
binary variable, training or not training, although the model and the identification proof
encompass the case of treatment variables with any finite number of values. Specifically,
we could allow for different types of training, for example by duration. We also single out,
from all potential control or outcome variables, a variable zi ∈ {0, 1}, which will play an
important role in identification and that we call the instrument.

3On this point, see also Sandvik et al. (2021).
4See Ballot et al. (2006), Dearden et al. (2006); Konings and Vanormelingen (2015).
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We assume that workers can be clustered into a finite number H of unobserved groups:
hi ∈ {1, ..., H}. The distributions of all variables wit, zi and di potentially vary across
latent groups. We think of these latent groups as embodying all the heterogeneity —
such as education, health, experience — that is observed and unobserved and which
condition wages and training. It is of course possible to first cluster the data, say by
education, and run the study separately within each education group. Semi-parametric
versions of our model can also easily be worked out, at the cost of restrictions on the
interaction between observed and unobserved characteristics. In the application, we will
classify workers from observations (wit, di, zi) and examine the correlations between the
estimated classification hi and a set of available controls ex post.

We start by making the following basic restrictions on the structure of the model.

Assumption 1 (Model structure). The basic model structure satisfies the following re-
strictions:

1. The wage process (wit)t≥1 is first-order Markov and bounded given the type, the
instrument and the treatment.

2. The pretreatment wage is independent of the instrument and the treatment given the
type: wi1 ⊥⊥ zi, di | hi.

3. The post-treatment wages are independent of the instrument given the type and the
treatment: (wit)t>1 ⊥⊥ zi | hi, di.

Allowing for residual wage autocorrelation (Condition 1) given unobserved hetero-
geneity is essential for empirical credibility. The workhorse model of the empirical wage
dynamics literature assumes that the wage process is the sum of a fixed effect, a random
walk and a transitory component, usually a stationary MA(0) or MA(1) process. If wages
are i.i.d., then two wage observations are sufficient for identification. But we need three
wage observations to identify the model for Markovian wages. They can be such that one
is observed before treatment and two are observed after, as in our empirical setup; or we
could observe two wages before treatment and one after. We can easily allow for an au-
toregressive process of higher degree; but the Markov property is crucial for identification.
The bounded support assumption is a simplification (see the proof sketch below).

Conditions 2 and 3 require that the special variable zi should not determine wages once
heterogeneity and training are controlled for. This exclusion restriction is fundamental
for our identification argument. Of course, the instrument will be useful to the extent
that it correlates with unobserved heterogeneity and/or treatment.

A useful way of thinking of the instrument is within a Roy model (see Heckman and
Vytlacil, 2005; Carneiro and Lee, 2009; Carneiro et al., 2010, 2011). Let w0, w1 denote
the potential outcomes (i.e., post-treatment wages) and let c be a random training cost.
Then, training occurs (d = 1) if the expected return E [w1 − w0 | h] is greater than the
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cost c. The instrument may enter this model in two different ways. Either z is a share
of the cost, in addition to a fixed effect and an idiosyncratic component: c = z + h + v;
or z is not a cost factor (c = h + v), but measures unobserved heterogeneity (z and h are
correlated).

In our application, zi will follow both interpretations. We will use the response to the
questionnaire about whether the worker has received information about the availability
of training sessions through any of the following channels: hierarchy, human resources,
coworkers, or unions. We think of this variable as an intention to treat: receiving training
information should encourage training. At the same time it is likely that some worker
types will be given training information more often than others. Lastly, conditional on
all worker heterogeneity, it seems reasonable to assume that training information has no
causal effect on wages.

We assume that the pretreatment wage is independent of both the instrument and the
treatment (Condition 2). Predetermination does not always hold (even conditional on all
relevant heterogeneity). For example, an “Ashenfelter dip” (wages drop before treatment)
could be observed if employers make workers pay for the forthcoming training. In our
application, most training sessions are rather short (a few days, rarely a whole week) and
the pre-treatment wage is observed a year before training, which makes predetermination
more plausible.

Leaving the instrument aside, our model adopts a standard difference-in-differences
structure. However, it is less restrictive in some important ways. The distributional
change version in Athey and Imbens (2006) assumes that there exists unidimensional
factors (uit)t≥1 and monotone functions h1 and htd, for t ≥ 2, d ∈ {0, 1}, such that
the pretreatment wage is wi1 = h1(ui1) and the counterfactual post-treatment wages
are wtd = htd(uit). The indexes (uit)t≥1 can be autocorrelated and correlated with the
treatment di, possibly through unobserved heterogeneity. Thus, the model of Athey and
Imbens is more restrictive in two ways. First, they assume a single index model for
counterfactual wages. Second, the index process (uit)t≥1 should be stationary given di

(constant marginal distributions). We can relax the single index and the stationarity
assumptions at the cost of adding more structure on unobserved heterogeneity. First, the
dependence between wage innovations and treatment is mediated by latent types, which
remain fixed over time. Second, we assume that there exists a special variable, which we
call the instrument, and whose exact role in identification will be described in the next
section.
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3 Identification

The identification argument builds on the literature on the identification of latent variables
models.5

Let Ft(wit | h, d) denote the distribution function for the marginal distribution of wages
wit given treatment and type. Let Ft|s(wit | wis, h, d) denote the distribution function for
the conditional distribution of wit given wis (we use s = t ± 1). Corresponding densities
are denoted with a lower-case f . These distributions can be discrete or continuous. Let
W2(h, d) be the support of f2(w2 | h, d) (the set of wages w such that f2(w2 | h, d) > 0) and
let W2(d) = ⋃

h W2(h, d) be the joint support (different types may have different supports).
Lastly, let π(h, z, d) denote the probability mass of workers of type h ∈ {1, ..., H}, with
values of the instrument z ∈ {0, 1} and of treatment d ∈ {0, 1}.

The density of the individual data (zi, di, wi1, wi2, wi3) can be factored in the following
way:

p(z, d, w1, w2, w3) =
∑

h

π(h, z, d) f2(w2 | h, d) f1|2(w1 | w2, h, d) f3|2(w3 | w2, h, d), (1)

where, by Bayes’ rule,

f1|2(w1 | w2, h, d) = f2|1(w2 | w1, h, d)f1(w1 | h)
f2(w2 | h, d) ,

f2(w2 | h, d) =
∑

h

f2|1(w2 | w1, h, d)f1(w1 | h).

The static case of i.i.d. wages given latent types and treatment can be seen as a particular
case where the distribution of wi2 is a mass on w1 (W2(d) = {w1}).

We show that all the components of the right-hand side of equation (1) are identified
under the following assumptions. These assumptions could be collected into one single
completeness assumption, as they all play an essential role in proving that an operator
relating observables to parameters is invertible.

Assumption 2 (Overlap). For all h, d, π(h, 0, d) ̸= 0.

Assumption 2 is standard and means that workers of all types have a positive proba-
bility of being both treated and non-treated for at least one instrument value, arbitrarily
set equal to zero.

Assumption 3 (Linear independence of wages distributions). For all d, all w2 ∈ W2(d),
and t = 1, 3, there exists grids of wages (wt) such that the systems

{
Ft|2(wt | w2, h, d), ∀h : f2(w2 | h, d) ̸= 0

}
5See Cardoso, 1989; Bonhomme and Robin, 2009 for Independent Component Analysis, and for mix-

tures see Hall and Zhou (2003); Hu (2008); Allman et al. (2009); Kasahara and Shimotsu (2009); Hu and
Shum (2012); Hu (2015); Bonhomme et al. (2016a,b); Hu (2017).
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are linearly independent.

Any latent type such that its conditional wage distribution can be replicated as a
linear combination of the other types’ distributions cannot be separately identified from
the other types. This is also a standard assumption that is similar to the completeness
assumptions in semiparametric IV models (see Theorem 2.4 of Newey and Powell, 2003,
for instance). It generalizes the rank conditions for identification in Least Squares models.

Assumption 4 (Discriminating instrument). For all d and h ̸= h′, π(h, 1, d)
π(h, 0, d) ̸= π(h′, 1, d)

π(h′, 0, d) .

Equivalently, π(z = 1 | h, d) must vary across h for all d. If z is taking more than
two values, then, separately for all d, we require the existence of a linear combination of
π(h,z,d)
π(h,0,d) , for z ̸= 0, satisfying the assumption.

Such an assumption is standard in the literature on latent group identification. For
example, it is related to Assumption 3 in Bonhomme et al. (2019) and Assumption 2.3
in Hu (2008) (or Assumption 3 in Hu’s (2017) survey). This assumption is important to
identify the type-specific wage distributions. Technically, these probability ratios will be
identified as eigenvalues and the distribution components as eigenvectors. If two eigenval-
ues are the same, only linear combinations of the corresponding group distributions are
identified.

Furthermore,
π(h, 1, d)
π(h, 0, d) = π(d | h, z = 1)π(z = 1|h)

π(d | h, z = 0)π(z = 0|h) . (2)

If the instrument is perfectly randomized — π(h | z) is independent of z — then As-
sumption 4 means that different types must show different probabilities of complying.
Or the instrument is not predictive of treatment, but it is not randomized and measures
unobserved heterogeneity (different distributions of z in different groups).

Finally, we assume that the pre-treatment wage distribution should be independent of
the treatment. Hence, pre-treatment wages must be independent of both the instrument
(Assumption 1) and the treatment.

Assumption 5 (Predetermination). For all types h, f1(w1 | h, d) = f1(w1 | h) and all
densities f1(· | h) are different.

This assumption repeats parts of Condition 2 of Assumption 1 and adds that the
f1(· | h) are different for all h. It is used to recover a common labeling of groups across
treatments as the identification of the model’s distributions is first done separately for
each value of the treatment.

Theorem (Identification). Under Assumptions 1-5, the number of latent groups H, and
the functional parameters π(h, z, d), f2(w2 | h, d), F1|2(w1 | w2, h, d), and F3|2(w3 |
w2, h, d) are identified up to labeling. Using Bayes’ rule, we then also identify F1(w1 | h, d),
f2|1(w2 | w1, h, d).
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The detailed proof of the identification theorem is in Appendix A. Here we sketch the
proof with just two wage observations and no wage dynamics to emphasize the roles of the
various assumptions. In the detailed proof, we consider the case of Markovian wages. The
proof differs from that in Hu and Shum (2012), who require four wages for identification,
but one can think of the instrument as a fourth measurement.

Sketch of the proof. The likelihood of the joint event {wi1 ≤ w1, wi2 ≤ w2, zi = z, di = d}
is

p(z, d, w1, w2) =
∑

h

π(h, z, d) F1(w1 | h) F2(w2 | h, d).

Thus, for each d, we want to identify a discrete mixture with an additional measurement
of the latent variable h, which is z. This additional measurement z can be as simple as a
binary variable. In Hu (2017)’s classification, we have a 2.1-measurement model. What is
important is that z is correlated with h but not with wages given h. Let us consider a grid
of wages, and let us store the discretized function F1(w1 | h) in a matrix F1 = [F1(w1 |
h)]w1,h, where wage points index rows and latent types index columns. Similarly, let
F2(d) = [F2(w2 | h, d)]w2,h. The first rows of F1, F2(d) are made of ones if the first point of
the grid is the maximal wage (bounded support). Next, let P (z, d) = [p(z, d, w1, w2)]w1,w2

store the likelihood values in a matrix where w1 indexes rows and w2 indexes columns.
Finally, let D(z, d) = diag [π(1, z, d), ..., π(H, z, d)] be a diagonal matrix with the latent
type probabilities π(h, z, d) along the diagonal. Then, P (z, d) = F1D(z, d)F2(d)⊤. Note
that the number of types H is simply the rank of P (z, d) and is therefore identified.6

This matrix factorization is not a Singular Value Decomposition because F1, F2(d) are
not orthogonal. This is why we need two matrices P (0, d) and P (1, d). Assumptions 2
and 3 guarantee that F1, F2(d) and D(0, d) are full rank. So P (0, d) has rank H and the
number of types is identified. To simplify, let us assume that F1 is a square matrix (the
number of wages on the grid is chosen equal to H). Then,

P (1, d)P (0, d)−1 = F1D(1, d)D(0, d)−1F−1
1 .

This last expression gives the eigendecomposition of the matrix P (1, d)P (0, d)−1. Its
eigenvalues are the elements of the diagonal matrix D(1, d)D(0, d)−1 = diag

[
π(h,1,d)
π(h,0,d)

]
.7

By Assumption 4, the ratios π(h,1,d)
π(h,0,d) are all distinct, meaning that the eigenvalues of

matrix P (1, d)P (0, d)−1 are simple. It follows that the eigenvectors in F1 are identified
up to scale. The unknown scale of the columns of F1 is identified because the first row
of F1 is made of ones if the grid goes up to maximal wages. If the eigenvalues are not

6See Kasahara and Shimotsu (2014) on the specific identification of the number of groups.
7When F1, F2(d) are square matrices we can identify them directly from the eigendecomposition of

P (1)P (0)−1, as we just did. However, using a finer grid making F1, F2(d) rectangular may be useful
to estimate the number of groups H. In the detailed proof in Appendix A, we use a finer grid making
F1, F2(d) rectangular and the Singular Value Decomposition of P (0) to standardize (or “whiten”) P (1).
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simple, then many choices are possible for the basis of the eigenspaces, and only some
linear combinations of the mixture components F1(w | h) will be identifiable.

To sum up, the role of the instrument is to create two observable matrices P (1, d) and
P (0, d) with the same algebraic structure. One is used to standardize the other (this is
called “whitening” in the Independent Component Analysis literature), which gives to the
ratios π(h,1,d)

π(h,0,d) the interpretation of eigenvalues. Assumption 4 is also a condition for the
point identification of the mixture components F1(w1 | h). A symmetric argument proves
the identification of F2(w2 | d).

This proves identification given treatment di. Finally, how do we know that one group
that we have labeled 1 for one particular value of d is the same as the group we have
labeled 1 for another value? This is where Assumption 5 helps. The eigendecompositions
for d = 0 and for d = 1 yield two values of F1 that should coincide.

Our estimation method is described in Section 5 below. Although the identification
proof is constructive, it leads to complex estimating equations that do not use all the
available information. This is why we prefer, for estimation, to use maximum likelihood
and a parametric version of the model. Our parametric version could be made arbitrarily
flexible, but the data that we use would not support the estimation of a complicated
specification with a large number of parameters. Estimating a (flexible) parametric model
after showing nonparametric identification is usual practice (see for example Cunha et al.,
2010; Bonhomme et al., 2019).

4 Treatment effects and usual estimators

Before turning to the estimation procedure and to our empirical application, we discuss
the definition of policy-relevant parameters in our framework, emphasizing the condi-
tions for their consistent estimation by OLS and IV. Some of the discussion here is well
known. However, our definitions may differ slightly from what is usually considered in
the literature. This is because our approach is conditional on unobserved heterogeneity.

Let wt(0) and wt(1) denote the counterfactual outcomes. Note that for pretreatment
wages, w1(0) = w1(1) by assumption. Let also ∆wt(0) and ∆wt(1) denote the wage
changes between t = 1 and t = 2, 3 given training. Under the assumptions of our setup,
counterfactual outcomes wt(0) and wt(1) satisfy the conditional independence assumption:

{wt(0), wt(1)} ⊥⊥ {d, z} | h. (3)

The difficulty here is that the conditioning variable h is not observed.
Define the observed outcome wt = d wt(1) + (1 − d) wt(0) and similarly for ∆w. We

first derive the Average Treatment Effect (ATE) and the Average Treatment Effect on the
Treated (ATT). Then, we consider Diff-in-diff OLS and IV estimators.
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ATE. We define a conditional Average Treatment Effect given type h as follows,

ATEt(h) = E [wt(1) − wt(0) | h] = µt(h, 1) − µt(h, 0),

where µt(h, d) = E[wt(d) | h]. The unconditional ATE is simply the average over types
h = 1, . . . , H of the conditional ATEs, that is,

ATEt =
∑

h

π(h) ATEt(h), (4)

where π(h) = ∑
z,d π(h, z, d) is the population share of type-h workers.

ATT. Under the above conditional independence assumption,

ATTt(h) = E [wt(1) − wt(0) | h, d = 1] = ATEt(h).

The ATT is thus the average value of the conditional treatment effect ATEt(h) over the
treated individuals:

ATTt = E [wt(1) − wt(0) | d = 1] =
∑

h

π(h | d = 1)ATEt(h), (5)

with
π(h | d) =

∑
z

π(h, z | d) and π(h, z | d) = π(h, z, d)∑
h,z π(h, z, d) .

Both ATE and ATT are identified under the structural model’s assumptions.

DiD-OLS. Then, we study the OLS estimator of the impact of the treatment on the
outcome change. The difference-in-differences (DiD) estimator is the OLS estimator: for
t = 2, 3,

bOLS(t) = Cov(∆wt, d)
Var(d) = E [∆wt(1) | d = 1] − E [∆wt(0) | d = 0]

=
∑

h

π(h | d = 1) ∆µt(h, 1) −
∑

h

π(h | d = 0) ∆µt(h, 0)

= ATTt + BOLS(t),

where BOLS(t) is the bias, defined as

BOLS(t) =
∑

h

[π(h | d = 1) − π(h | d = 0)] ∆µt(h, 0), (6)

with ∆µt(h, d) = µt(h, d) − µ1(h).
Hence, the OLS estimator is an unbiased estimator of ATT (BOLS(t) = 0) if
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1. π(h | d = 1) = π(h | d = 0) for all types h; or

2. ∆µt(h, d = 0) = ∆µt(h = 1, d = 0) for all h, t.

These restrictions will not hold in general as we expect neither the decision to treat, nor
the outcome levels to be independent of individual types. However, Assumption 2 is the
usual common trend assumption in DiD setups: the expected change in the outcome, for
the untreated, is the same for everyone.

Lastly, the sign of the bias is unknown a priori. However, imagine that good types,
with higher pre-treatment wages (and wage growth), also have a higher probability of
benefiting from training. Then, we expect the DiD-OLS estimator to be biased upward
vis-a-vis the ATT. One can find a similar discussion in Carneiro et al. (2011).

DiD-IV. The IV estimator of the regression of ∆wt on d, using z as an instrument can
be expressed as follows,

bIV(t) = Cov(∆wt, z)
Cov(d, z) = E(∆wt | z = 1) − E(∆wt | z = 0)

E(d | z = 1) − E(d | z = 0) .

The denominator of bIV (t) is trivially

E(d | z = 1) − E(d | z = 0) =
∑

h

[π(h, d = 1 | z = 1) − π(h, d = 1 | z = 0)] .

The numerator can be factored as

E(∆wt | z = 1) − E(∆wt | z = 0)

=
∑

h

[π(h, d = 1 | z = 1) ∆µt(h, 1) + π(h, d = 0 | z = 1) ∆µt(h, 0)]

−
∑

h

[π(h, d = 1 | z = 0) ∆µt(h, 1) + π(h, d = 0 | z = 0) ∆µt(h, 0)]

=
∑

h

[π(h, d = 1 | z = 1) − π(h, d = 1 | z = 0)] [µt(h, 1) − µt(h, 0)]

+
∑

h

[π(h | z = 1) − π(h | z = 0)] ∆µt(h, 0),

making use of

π(h, d | z) = π(h, z, d)∑
h,d π(h, z, d) and π(h | z) =

∑
d

π(h, d | z).

Hence,
bIV(t) = LATE(t) + BIV (t),
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where we define

LATE(t) =
∑

h [π(h, d = 1 | z = 1) − π(h, d = 1 | z = 0)] ATEt(h)∑
h [π(h, d = 1 | z = 1) − π(h, d = 1 | z = 0)] (7)

and
BIV (t) =

∑
h [π(h | z = 1) − π(h | z = 0)] ∆µ(h, 0)∑

h [π(h, d = 1 | z = 1) − π(h, d = 1 | z = 0)] . (8)

The LATE is a weighted average of conditional ATEs given type.8 This average is
informative if the weights are uniformly positive or negative, that is, if monotonicity
holds (Imbens and Angrist, 1994):

π(h, d = 1 | z = 1) ≥ π(h, d = 1 | z = 0),

with a strict inequality for at least one type. In our setup, it makes sense to think that the
probability of training increases if the employer informs its workers about training possi-
bilities. However, our estimator is more generally applicable as we do not need to assume
monotonicity in the treatment probability. As in de Chaisemartin and d’Haultfoeuille
(2020)’s application to difference-in-differences, we can check whether all weights are of
the same sign or not.

The IV estimator is an unbiased estimator of the LATE (BIV = 0) if

1. π(h | z = 1) = π(h | z = 0) for all types h; or

2. ∆µt(h, 0) = ∆µt(1, 0) for all h.

The second restriction has already been discussed in the case of OLS. The first restriction
now links heterogeneity h to the instrument z instead of the treatment d. In our appli-
cation, the instrument is defined at the worker and firm level. So, it may be correlated
with worker types either because of matching — good firm types matching with good
worker types — or if employers themselves inform workers about training possibilities
in a selective way. In many usual LATE setups, the instrument is not local (a policy
designed at some regional level, for example). In which case, the first restriction is also
more likely to hold (that is, if individuals do not move in response to the regional policy).
In randomized setups, z is the intention to treat, the random assignment to treatment
and is by construction exogenous. Then, treated individuals may comply (d = 1) or not
(d = 0) with the assignment to treat (e.g., Abadie et al., 2002).

8We call the parameter the LATE although our definition slightly differs from the original one in
Imbens and Angrist (1994).
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5 Application: the wage returns to training

In this section, we first present the data. We then perform some preliminary economet-
ric analysis, estimating treatment effects on wage levels and first differences using OLS
and 2SLS. Finally, we present the parametric specification and the maximum likelihood
estimation method using the EM algorithm. We discuss the estimation of the number of
groups H and how we construct confidence intervals (CIs) for the estimated parameters.

5.1 The data

We use survey data collected between 2013 and 2015 by Céreq9 as part of the DEFIS
survey.10 The survey sampled 4,529 firms with three employees or more from all sectors
but agriculture in 2013, and 16,126 workers were subsequently drawn from these firms’
employees.11 The main objective of the survey was to document the use of formal or
non-formal adult education by employees, and the effect of this form of learning on work
outcomes. Several waves of interviews were conducted. We use the first wave in this paper,
in which employees were interviewed between June and October 2015 about any training
sessions that they participated in between January 2014 and the time of the interview.
This was done through retrospective questions (such as “Did you hold a full-time or a
part-time contract in firm X in the Fall of 2013?”, or “Since January 2014, did you take
part in a training program?”).

The responses to the employer survey (in December 2014) and the worker survey (in
2015) are matched with wage data obtained from tax registers, reported by employers to
the tax authorities (Déclarations annuelles de salaires, DADS) for the ongoing employ-
ment spells in December 2013, December 2014, and December 2015.12 Our definition of
the wage is the total earnings paid to the worker by the employer in December 2013, 2014,
and 2015, net of payroll taxes (but not net of income tax) and divided by the total number
of hours worked in that employment in the whole years of 2013, 2014, and 2015. Nearly
80% (12,597/16,126) of workers reported that they were employed by the same firm as
in 2013 at the time of the interview in 2015. Greater fractions (89.2% = 12,100/13,562
in 2014 and 85.3% = 11,103/13,014 in 2015) of the wages recorded for 2014 and 2015
were paid by the same employer who paid the wage recorded in 2013. Therefore, a large
majority of workers in our data did not move during our period of analysis. We could
keep only these workers (as we did in an earlier version of this paper). However, in doing

9Centre d’études et de recherches sur les qualifications (a French public institution).
10Dispositif d’enquêtes sur les formations et itinéraires des salariés.
11The employees were sampled among the sampled firms’ employees, provided that they were employed

by their firm in December 2013. The latter sampling is stratified to provide a representative sample of
workers

12More precisely, the last employment spells of the years 2013, 2014 and 2015, which ends at the end
of December for 83% of the workers in 2013, 78% in 2014 and 76% in 2015.
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so, we might lose some effect of training that might make a worker more employable. The
estimation sample retains all workers, movers and stayers.

To give a first overview of the factors affecting the selection into training, we start
with a simple comparison of employees who reported at least one training session in 2014
or 2015 with employees who did not declare any training. Among the 16,126 employees
surveyed in 2015, 6,349 individuals (39.3%) declared at least one training session, with a
majority of them declaring only one session.13 Table 1 presents the average characteristics
of trained and untrained workers in terms of demographics, education, occupation, job,
and firm characteristics, before any training (situation in the Fall of 2013). Statistics
are presented both for the overall sample (the two left-hand columns) and the analysis
sample (the two right-hand columns). The analysis sample excludes some individuals
with extreme wage observations.

All variables in rows are binary, except the age and hourly wage (in logs). Table 1
suggests that on average, workers who trained between January 2014 and the time of
the first interview (between June and October 2015) are more likely to be French, male,
living as a couple, and to have children (even controlling for age) compared to workers
who did not train. They also tend to be more educated, most of them having post-
secondary degrees. They occupy more skilled jobs, they have higher salaries, and they
are more likely to hold full-time and permanent contracts. They are also more likely to
receive information on training (our instrument). Using the employer survey, we also find
that trained workers are on average in bigger firms, that are more likely to have human-
resources staff. Overall, more advantaged workers are more likely to get training. The
two samples are generally similar across observable dimensions, with notable differences
being that individuals in our analysis are more likely to be full-time and hold a permanent
contract.

In the next section, we present the results from estimating the effect of training on
wages, in level and first differences, by OLS and IV.

5.2 OLS and IV

We start by estimating the wage equation,

wit = αt + βtdi + xiθt + vit, (9)

where wit are log-wages at the end of 2013 (t = 1), 2014 (t = 2), and 2015 (t = 3);
di is an indicator for training between January 2014 and December 2015; and xiθt is a
combination of control variables (as observed in 2013).14 This equation is first estimated

13Among the 6,349 employees who received training, 61% declared one session, 26% declared two, 9%
declared 3, and less than 4% declared more than 3.

14For controls, we use: gender, age brackets, married, handicapped, having health problems, open-ended
contract, full-time contract, socioeconomic status, firm size brackets, existence of an HR department,
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Table 1: Comparison of trained and untrained workers by baseline characteristics

All Analysis
Trained Untrained Trained Untrained

Demographics:
Age (modal group) 40 to 44 45 to 49 40 to 44 45 to 49
Male 70.7 67.3 70.7 68.2
French 97.0 94.1 97.7 95.1
In couple 74.8 68.4 76.2 70.7
Has children 57.4 49.0 59.3 52.5
Disability 7.24 12.50 6.89 11.90
Previous health problem 3.39 5.72 3.01 5.26
Education:
Less than high school diploma 28.3 46.1 27.4 45.0
High school diploma 18.5 18.6 18.3 18.6
Vocational degree 20.7 14.9 21.9 16.1
Bachelor’s degree 7.93 5.48 7.87 5.60
Master’s degree or more 23.9 13.8 23.9 13.8
Occupation:
Unskilled production 5.88 9.58 5.58 9.05
Skilled production 18.5 26.2 17.3 25.4
Office worker 20.9 27.6 20.3 27.6
Foreman, supervisor 13.70 9.95 14.0 10.3
Technician, lower management 9.29 6.51 9.84 7.10
Engineer, manager 29.5 15.7 31.3 17.0
Job characteristics:
Log(hourly wage), 2013 (w1) 2.7 2.5 2.7 2.5
Log(hourly wage), 2014 (w2) 2.8 2.6 2.7 2.6
Log(hourly wage), 2015 (w3) 2.8 2.6 2.8 2.6
Permanent contract 90.0 83.3 93.7 91.4
Full time contract 88.7 80.1 91.1 85.3
Information on training (z) 78.8 62.8 80.2 65.3
Firm characteristics:
3 to 49 employees 24.0 39.1 21.6 35.9
50 to 249 employees 20.5 21.8 20.6 22.8
250 to 499 employees 9.13 7.19 9.20 7.52
500 to 999 employees 8.58 6.53 8.73 6.84
1000 to 1999 employees 7.38 6.25 7.36 6.21
2000+ employees 30.4 19.1 32.5 20.7
Has HR department 89.6 81.5 90.8 83.1
Has individual incentive strategy 72.4 60.0 74.2 62.4
Has collective incentive strategy 78.4 64.5 80.5 67.7
Outsources part of activity 40.6 34.8 39.7 34.3
Number of observations 6343 9783 5110 6520

Notes: “All” refers to the whole sample and “Analysis” refers to the sub-sample of workers who remain
in our analysis sample. For all binary variables, the mean is given as a percentage. The bottom row gives
the number of workers for all variables except log(hourly wage), where 59 observations are missing wages
in 2013, and approximately 3,000 in 2014 and 2015.
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Table 3: Static estimation of wage regressions with training

OLS 2SLS
Without With Without With
controls controls controls controls

Log-wage levels
2013 0.169 0.060 0.349 0.086

(0.007) (0.005) (0.044) (0.041)
2014 0.175 0.064 0.381 0.135

(0.007) (0.005) (0.044) (0.041)
2015 0.174 0.063 0.377 0.134

(0.007) (0.005) (0.045) (0.043)

Log-wage changes
2014 0.005 0.004 0.032 0.049

(0.003) (0.003) (0.019) (0.027)
2015 0.004 0.003 0.029 0.048

(0.004) (0.004) (0.023) (0.031)
Nb of workers 11,628 11,628 11,628 11,628

by OLS for each year separately, and then by 2SLS, instrumenting di by zi, the information
on training mentioned above. The estimations are done with and without controls. The
DiD estimate of the effect of training in 2014 and 2015 is obtained as ∆β2 = β2 − β1 and
∆β3 = β3 − β1.

The results are reported in Table 3. Note first that the effect of training on pre-
treatment wages remains significant even after adding many controls to the estimation.
This is admittedly a lot less the case with IV and controls than with OLS.

The OLS-DiD results suggest very small effects of training (differences in the β’s
around 0.3-0.5% with and without controls). After instrumenting the training variable,
we see stronger effects of around 3-5%. Note that standard errors jump by one order of
magnitude, pointing at a certain weakness of the instrument.

These results suggest the existence of a causal link between wages and training of
around 5% with controls, which is non-negligible. The estimation of our structural model
will help us understand better the nature of the differences between OLS and IV.

5.3 Parametric specification

In practice, we specify a parametric version of the model and we use maximum likelihood
for estimation.
existence of wage incentives for performance (individual and collective), whether the firm outsources
activities. See Table 1 for summary statistics.
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We assume that log-wages are normal conditional on type and training, and first-order
autoregressive with autocorrelation coefficient ρ. More precisely, we postulate that

w1 = µ1(h) + u1, where u1 ∼ N (0, σ2
1(h)),

and for t = 2, 3,

wt = µt(h, d) + ut, where ut ∼ N (ρut−1, σ2
t (h, d)).

Then, with φ(u) = (2π)−1/2e−u2/2, we have,

f1(w1 | h) = 1
σ1(h)φ

(
w1 − µ1(h)

σ1(h)

)
,

and
f2|1(w2 | w1, h, d) = 1

σ2(h, d)φ

(
w2 − µ2(h, d) − ρ [w1 − µ1(h)]

σ2(h, d)

)
,

f3|2(w3 | w2, h, d) = 1
σ3(h, d)φ

(
w3 − µ3(h, d) − ρ [w2 − µ2(h, d)]

σ3(h, d)

)
.

The model is flexible at first and second order as long as parameters µt, σt are left unre-
stricted.

Probabilities π(h, z, d) are left unrestricted.
The data for each individual i is the array xi = (wi1, wi2, wi3, zi, di), i = 1, ..., N .

The parameters of the model are denoted β = (µ, π, ρ, σ). The complete likelihood of
individual i’s observations xi and any type h is

ℓih(β) ≡ ℓ(xi, h, β) (10)

= π(h, zi, di) f1(wi1 | h, β) f2|1(wi2 | w1i, h, di, β) f3|2(wi3 | wi2, h, di, β).

The individual likelihood is ℓi(β) = ∑
h ℓih(β). The sample likelihood is the product of

individual likelihoods, L(β) = ∏
i ℓi(β).

We use a sequential EM-algorithm for the likelihood maximization (see Appendix B
for details). Moreover, we relabel groups h to be increasing in the value of µ1(h).

5.4 Estimating the number of types, H

In the identification of our model, one of the key parameters that we showed to be identi-
fied was the number of types, H. In our identification strategy, the number of types was
simply the rank of the matrix of observed data points, P (z). However, in the alternative
method we use to estimate our model, the econometrician fixes H at the start of the pro-
cedure. Therefore, if we want to avoid selecting the number of types arbitrarily, we need
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a method to estimate (or “choose”) H. This problem has been well-studied theoretically
in the computer science literature, but practical methods are rare, especially in situations
where the correct model is not in the set of considered models (Fraley and Raftery, 1998).
We use a range of criteria that we will describe in the results section.

5.5 Bootstrap

Standard calculations of parameter standard errors do not incorporate the random nature
of the estimated classification (even if it should be negligible asymptotically). We there-
fore bootstrap standard errors by resampling and reestimating many times the whole
procedure. This is computationally intensive as we use 500 replicated samples, with
replacement, from the original sample. Specifically, we use the weighted-likelihood boot-
strap. O’Hagan et al. (2019) show that it provides a robust solution in our setting.15

Standard bootstrap may generate unstable results if re-sampling causes certain types to
be under-represented or even to disappear. The weighted version draws non-zero weights
for each observation from a Dirichlet distribution to ensure that no observations are com-
pletely dropped in any bootstrapped sample (Newton and Raftery, 1994). The weights
λi are such that they sum to the size of the full sample, that is, ∑i λi = N . We use the
original, full-sample estimates as initial values for the algorithm at the beginning of each
re-estimation. Confidence intervals can then be estimated by selecting the corresponding
percentiles of the bootstrapped parameter estimates, i.e., the 5th and 95th percentiles for
a 90% confidence interval.

6 Results

We present the results in this section. We first explain how we choose the number of groups
H. Next, we discuss the estimated distribution of groups, overall, and across values of
instrument z and treatment d. Then, we discuss the empirical validity of Identification
Assumption 4 and the validity of the common trend assumption. Finally, we compare the
plugin estimates of treatment effects ATE, ATT and LATE with OLS and 2SLS.

6.1 Choosing the number of types H

The panels of Figure 1 present three criteria we use to choose the number of types for the
remainder of our analysis. In Figure 1(a) the different broken lines show how total likeli-
hood (ln L) and penalized-likelihood criteria evolve with H. The two penalized-likelihood

15The validity of bootstrap for the estimation of mixtures by maximum likelihood rests on identifiability.
Identifiability was discussed in Teicher (1963); Yakowitz and Spragins (1968). It takes the form of a rank
condition such as Assumption 3 above. Then, in practice, one has to avoid group labeling to randomly
change across bootstrap samples. There exist various techniques for that. Weighted-likelihood bootstrap
is a popular one.

20



criteria are the well-known Akaike and Bayesian information criteria (respectively, AIC

and BIC). We are looking for slope discontinuities (“elbows”), that is, values of H where
the marginal gain in likelihood for an additional type is noticeably less than it is for H −1.
There are elbows at H = 3 and then at H = 7 for AIC and BIC. The criteria are all then
quite flat after H = 8.

In Figure 1(b) are displayed the smallest group sizes (minh π(h)) for each number of
types. We do not want to let group sizes get too small and so studying this plot can help
to select H. We can see that there are a number of points where the minimum group size
drops off: around H = 9 and around H = 19.

Figure 1(c) plots the estimated autoregressive parameter ρ against H. The latent types
should capture time-invariant heterogeneity across individuals, and hence we expect a ρ

significantly smaller than one. The estimate of ρ drops sharply until H = 8 when it starts
to level out, though it is still slightly decreasing until about H = 20.

Finally, in Figure 2, we plot the aggregate “treatment” effects, ATE. We first focus
on the year 2013 preceding treatment. Although the model assumes µ1(h) independent
of d, nothing prevents the calculation of a mean wage in 2013 by type h and treatment d.
This can be done in a post-convergence M-step. The counterfactual ATEs should be zero
under our model assumptions. Thus, we want to select a number of types which gives an
ATE in 2013 very close to zero. We see that ATE(2013) becomes truly negligible only for
very large values of H ≥ 19. At the same time, the treatment effects for 2014 and 2015
become larger for these large values of H. Thus, we conclude that only for a large H can
we be reasonably sure that unobserved heterogeneity has exhausted most of the spurious
effect of training and is able to reveal the full extent of the effect of the treatment.

Overall, H = 19 seems to be a conservative choice to focus on for the rest of this
paper, although we have analyzed other slightly lower values that lead to similar results.

6.2 Marginal and conditional type distributions

In Figure 3, we study the composition of the sample in terms of types h ∈ {1, ..., H = 19}.
The error bars indicate bootstrapped, 90% confidence intervals. Group sizes π(h) are
displayed in Panel (a); the heterogeneity distribution by value of the instrument π(h | z)
and by value of the treatment π(h | d) are shown in Panels (b) and (c).

Next, as emphasized in Section 4, the IV estimator is equal to the LATE if the instru-
ment is well randomized, i.e. π(h | z = 1) = π(h | z = 0), which would require the red
and blue bars in Figure 3(b) to be equal for each h. This property appears to be violated
here, with lower types being less likely to receive information on training (red bars larger
than blue), while middle to high types are more likely to receive information (blue bars
larger).

The opposition low type/high type is here even more pronounced for the distribution
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Figure 1: Criteria for choosing the number of types H

(a) Likelihood criteria

(b) Minimum group size π(h) by H

(c) Autoregressive parameter ρ

Notes: Likelihood criteria: If M is the number of parameters, N the number of observations, and L the
likelihood, AIC = − ln L + 1

2 ln M , and BIC = − ln L + ln(N)M . We plot −AIC and −BIC.
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Figure 2: ATE for values of H ≤ 30

Notes: The solid (transparent) bars are the estimated ATE (ATT) for a given H.

of types given treatment, which indicates a degree of compliance (see next section). It
follows that the DiD-OLS and DiD-IV will be biased estimates of ATT and LATE unless
the common trend assumption is satisfied.16

We end this section with an answer to the question: what are these types? The
EM algorithm allows to estimate a posterior type probability for all workers. We can
thus predict pretreatment wages for all workers as µ1i = ∑

h pi(h)µ1(h), where pi(h) is
the posterior type probability of individual i being of type h and µ1(h) is the mean
pretreatment wage given type. This provides a continuous measure of the predicted
type for all workers that we can correlate with observed characteristics. The regression
output is displayed in Table 4. Higher types are older, more educated, employed in
more skilled occupations and in larger firms. They are more often male, in a couple and
in better health. Better types also tend to be matched with better jobs: open-ended,
full-time contracts and with employers that provide individual or collective incentives
to their employees. Controlling for all these characteristics does not exhaust the positive
correlation between the latent type and training. All observed characteristics and training
predict the type index µ1i well, with an R-square close to 60%, but a very significant
fraction of the variance remains unexplained. This is indicative that there is unobserved
heterogeneity on top of all these observed controls and that the 19 latent types are able
to capture multi-dimensional heterogeneity well.

16Note that
∑

h π(h | z) =
∑

h π(h | d) = 1. A bigger proportion of some types in the treated group
implies a smaller proportion of other types.
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Figure 3: Type distributions

(a) Group sizes π(h)

(b) By instrument value, π(h | z)

(c) By treatment value, π(h | d)

Notes: Error bars show 90% confidence intervals, obtained by bootstrap.
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Table 4: Link between observed and unobserved characteristics

Train 0.057∗∗∗ (0.004) Socio-professional status
Unskilled production −0.392∗∗∗ (0.010)

Age Skilled production −0.372∗∗∗ (0.008)
15 to 19 years −0.139∗∗∗ (0.024) Office worker −0.369∗∗∗ (0.007)
20 to 24 years −0.2010∗∗∗ (0.010) Foreman, supervisor −0.199∗∗∗ (0.008)
25 to 29 years −0.165∗∗∗ (0.008) Technician, lower manager −0.282∗∗∗ (0.009)
30 to 34 years −0.089∗∗∗ (0.008) Engineer, executive 0
35 to 39 years −0.0340∗∗∗ (0.008)
40 to 44 years 0 Firm size
45 to 49 years 0.0275∗∗∗ (0.007) 3-9 0
50 to 54 years 0.062∗∗∗ (0.008) 10-19 0.021∗∗ (0.011)
55 to 59 years 0.080∗∗∗ (0.009) 20-49 0.028∗∗∗ (0.011)
60 to 64 years 0.063∗∗∗ (0.018) 50-249 0.029∗∗∗ (0.011)
65 to 69 years 0.069 (0.035) 250-499 0.058∗∗∗ (0.011)
70 years and over −0.149∗∗ (0.084) 500-999 0.073∗∗∗ (0.012)

1000-1999 0.085∗∗∗ (0.013)
Education >2000 0.100∗∗∗ (0.011)

Less than high school −0.140∗∗∗ (0.009)
High school −0.068∗∗∗ (0.010) Job characteristics
Vocational −0.007∗∗∗ (0.008) Open ended contract 0.020∗ (0.009)
Bachelor 0 Full time 0.053∗∗∗ (0.007)
Master or more 0.065∗∗∗ (0.010) HR department 0.008 (0.007)

Individual incentives 0.012∗∗∗ (0.005)
Female −0.077∗∗∗ (0.005) Collective incentives 0.017∗∗∗ (0.006)
Couple 0.026∗∗∗ (0.005) Outsourcing 0.020∗∗∗ (0.004)
Disability −0.032∗∗∗ (0.007)
Previous health issues −0.042∗∗∗ (0.010) Constant 2.785∗∗∗ (0.018)

Observations 11,222
R2 0.580
Adjusted R2 0.579
Residual Std. Error (df = 11183) 0.220
F Statistic (df = 38; 11183) 407.156∗∗∗

Notes: This table shows the regression of predicted wages in 2013, µ1i =
∑

h pi(h)µ1(h), where pi(h) is
the posterior type probability of individual i being of type h and µ1(h) is the mean pretreatment wage
given type, on observed individual and job characteristics.
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6.3 Compliance

Figure 4 investigates compliance. We begin to display, in Panel (a), the probabilities of
being treated conditional on type and the instrument value, i.e., E(d | h, z) = π(d = 1 |
h, z) for all h ∈ {1, ..., H = 19} and z ∈ {0, 1}. There are two key features to note. First,
right-blue bars are higher than left-red ones. This is evidence of instrument monotonicity,
which holds perfectly here: those who receive information on training are more likely to
train across all types. Second, the bars are generally increasing by type: always taking
and compliance seem to be increasing in unobserved type (commending higher wages).
Thus, there is a pattern that training is more likely to be offered to more skilled types,
and skilled workers are more likely to train even if they have not been informed about
training possibilities by their employers.

Panel (b) displays the symmetric probability of being informed conditional on type
and the treatment value, i.e., E(z | h, d) = π(z = 1 | h, d). Recall that Assumption 4
requires

π(h, 1, d)
π(h, 0, d) = π(z = 1 | h, d)

1 − π(z = 1 | h, d)
to vary with h for the structural model to be identified. Notice that

π(h, 1, d)
π(h, 0, d) = π(d | h, z = 1)π(h | z = 1)π(z = 1)

π(d | h, z = 0)π(h | z = 0)π(z = 0) .

We can see from Panel (a) that π(d=1|h,z=1)
π(d=1|h,z=0) is decreasing in h, and from Figure 3(b) that

π(h|z=1)
π(h|z=0) is increasing. After h = 10, both ratios tend to stabilize. The resulting effect on
E(z | h, d) or π(h,1,d)

π(h,0,d) is a greater stability. We can see from Figure 4(b) that there is some
variability of π(z = 1 | h, d) before h = 5 and much stability above. We can therefore
expect some difficulty in accurately identifying component distributions for larger values
of h. Whether there is enough variation of π(z = 1 | h, d) with h for the model to be
identified should be seen in the width of Bootstrap confidence intervals.

6.4 Conditional treatment effects

Figure 5 displays type-conditional average treatment effects ATE(h) for all h ∈ {1, ..., H}.
There is substantial heterogeneity in treatment effects across types, although the effects
are generally small and positive. A few groups, though, exhibit large and significant
effects, but they are not the largest ones.

Note that we calculate an empirical wage mean in 2013 for the trained and the un-
trained, and corresponding pseudo-ATEs, as in Figure 2. Again, we did this calculation to
verify the predetermination assumption ex post. The algorithm performs well along this
dimension, with ATE(h)s for 2013 generally small relative to 2014 and 2015. Moreover,
the 90% bootstrapped confidence intervals (black error bars) include zero for the majority
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Figure 4: Treatment and instrument probability

(a) Treatment probability π(d = 1 | h, z)

(b) Rank condition, π(z = 1 | h, d)

Notes: Error bars show 90% confidence intervals, obtained by bootstrap.
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of types.
Lastly, we show in Figure 6 a graphical test of the common trend assumption. We

see some large fluctuations of µt(h, d = 0) − µ2013(h, d = 0), for t = 2014, 15, apparently
significant, with both positive and negative values. This certainly explains why the DiD-
OLS effect of training was estimated very close to zero.

6.5 Average treatment effects

Finally, we aggregate across types to obtain a variety of treatment effects summarizing
the whole sample, which are presented in Table 5.

The first three columns are estimates of the ATE, ATT, and LATE. These are plug-
in estimates from the structural model. We take the conditional mean wage estimates
µt(h, d) in years t = 2013, 2014, 2015, and we calculate the ATE, ATT and LATE as in
equations (4), (5) and (7).

Let then bOLS = ATT+BOLS and bIV = LATE+BIV denote the corresponding plug-in
estimates of the OLS and IV parameters

Cov(wt, d)
Var(d) and Cov(wt, z)

Cov(d, z) (11)

for wage levels wt in all three years, where BOLS and BIV are their biases calculated using
equations (6) and (8). The biases are huge, making most of the value of the parameters.
They arise because of heterogeneous distributions of the treatment d and the instrument
z, and heterogeneous wage trends given treatment. The very large IV bias is indicative
that the instrument is not perfectly randomized: π(h | z = 1) ̸= π(h | z = 0).

Finally, we denote as b̂OLS and b̂IV the standard, analog OLS and the IV estimators
obtained by replacing the population variances in equation 11 by sample variances. While
for OLS the plug-in and analog estimates coincide (bOLS = b̂OLS), for IV there may be
an additional bias because, in the sample, pretreatment wages may be correlated with
the treatment and the instrument, and post-treatment wages may be correlated with
the instrument given the treatment (Assumptions 5 and 4). These two assumptions are
necessary for our structural model to be identified, and are imposed in the Maximum
Likelihood estimation. However, they are not imposed by the 2SLS estimator. The
difference b̂IV −bIV is displayed in column 9 of Table 5. Although the magnitudes of these
biases are sizable in comparison to the treatment effect values, their Bootstrap standard
errors are even larger. Hence, Assumptions 5 and 4 are not rejected.

In the end, we find similar-sized estimates of the ATE, ATT, and LATE, of around
3-4% in 2014, falling to 1.5 − 2% in 2015. These are quite precisely estimated. The
DiD-2SLS estimator with and without controls is of comparable magnitude but a lot less
precise. The DiD-OLS estimates seems to exhibit a severe attenuation bias.
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Figure 5: Type-conditional treatment effects

Notes: Type-conditional average treatment effects: ATEt(h) = µt(h, d = 1) − µt(h, d = 0). The error
bars are 90% confidence intervals obtained by bootstrap.
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Figure 6: Test of common trends

Notes: The bars show the growth in (log)-wages of the untrained, ∆µt(h, d = 0) = µt(h, d = 0) − µ1(h),
for 2014 (t = 2) and 2015 (t = 3). Under the common trend assumption, ∆µt(h, d = 0) should be
independent of h. The error bars represent 90% confidence intervals, obtained by bootstrap.

Table 5: Aggregate treatment effects

ATE ATT LATE b̂OLS = bOLS BOLS b̂IV bIV BIV b̂IV − bIV

2013 .004 .005 .003 .169 .165 .348 .340 .337 .008
(.002) (.002) (.002) (.007) (.007) (.046) (.046) (.046) (.010)

2014 .033 .038 .034 .173 .134 .380 .357 .323 .023
(.004) (.005) (.014) (.007) (.008) (.046) (.045) (.046) (.012)

2015 .022 .016 .015 .172 .155 .377 .333 .318 .044
(.004) (.004) (.011) (.007) (.008) (.046) (.043) (.045) (.016)

Notes: (1) Standard errors are in parentheses, calculated as the standard deviation of the parameter
estimates from 500 weighted-likelihood bootstrap repetitions. (2) b̂OLS and b̂IV are “naive” estimates
obtained using ordinary least squares (OLS) and two-stage least squares (IV). (3) bOLS and bIV are the
plug-in estimates, calculated from structural estimates using the formulas in Section 4.
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7 Conclusion

In this article, we developed and demonstrated the empirical use of discrete mixtures for
estimating treatment effects that allows for unobserved heterogeneity. The identification
of conditional treatment effects given latent types (ATE, ATT, and LATE) is rendered
possible by a combination of nonparametric difference-in-differences and instrumental-
variable inference. Conventional monotonicity or common trend assumptions are not
required for identification. In addition, we allow outcome variables (wages) to be Marko-
vian given treatment and latent type. By assuming discrete types, we have unobserved
heterogeneity conditioning observed outcomes, treatments, and instruments in a very gen-
eral way. For example, no form of linearity nor homoscedasticity is required, in contrast
with factor models. This also allows us to base the estimation of a flexible parametric
form of the model on the EM algorithm. Our method is generally applicable to other
policy evaluation problems. In our application using novel French data on training and
wages, we find that formal training has a positive effect on wages, around 4% on average.
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A Proof of the Identification Theorem

The identification proof has four steps.

Step 1: Identifying restrictions. Consider first the joint probability p(z, d, w1, w2, w3)
of treatment di = d, instrument zi = z, and wages wi1 ≤ w1 (before treatment) and
wi2 = w2, wi3 ≤ w3 (after treatment). We now drop index i to lighten notation. Mixing
over unobserved types, for any wage w2 ∈ W2(d) — such that f2(w2 | h, d) ̸= 0 at least
for one h — we can write

p(z, d, w1, w2, w3) =
∑

h:f2(w2|h,d)̸=0
π(h, z, d) f2(w2 | h, d) F1|2(w1 | w2, h, d) F3|2(w3 | w2, h, d),

where F1|2 and F3|2 denote distribution functions and f2 a density. Notice how we first
condition on wi2. The sum is therefore over the values of h such that f2(w2 | h, d) ̸= 0.

Let us consider a grid of N wages w1 and M wages w3, including maximal wages
w1, w3. Then, for any value of (z, d, w2), we can store these probabilities p(.) in a matrix

P (z, d, w2) = [p(z, d, w1, w2, w3)]w1×w3
,

where the subscript w1 ×w3 means that the values of w1 index rows and those of w3 index
columns. Let

D(z, d, w2) = diag [π(h, z, d) f2(w2 | h, d)]h:f2(w2|h,d)̸=0

be the diagonal matrix with π(h, z, d) f2(w2 | h, d) in the hth diagonal entry, keeping only
the values of h such that f(w2 | h, d) ̸= 0. Let also G1(d, w2) =

[
F1|2(w1 | w2, h, d)

]
w1×h

denote the matrix of pre-treatment wage probabilities, with w1 indexing rows and h in-
dexing columns. Similarly, let G2(d, w2) =

[
F3|2(w3 | w2, h, d)

]
w3×h

be the post-treatment
matrix. Again, the values of h indexing columns are only those such that f2(w2 | h, d) ̸= 0.
Note that the first row of G1, G2 is a row of ones. Finally, In matrix notation, we then
have, for every (w2, z, d),

P (z, d, w2) = G1(d, w2) D(z, d, w2) G2(d, w2)⊤.

The number of columns of G1(d, w2) and G2(d, w2) and the dimensions of D(z, d, w2) vary
with w2, as we keep only those values of h such that f2(w2 | h, d) ̸= 0 in their construction.
But, we do not know what they are a priori.

Step 2: Identification given treatment d and first post-treatment wage w2. We
first fix a value d of the treatment variable and a wage w2 ∈ W2(d). The previous step
shows that, for all d, w2, there are two observable matrices, P (0, d, w2) and P (1, d, w2),
with the same algebraic structure. Importantly, G1(d, w2) and G2(d, w2) are independent
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of z as wages are independent of the instrument given treatment and type (Assumption
1). Under Assumption 3, G1(d, w2) and G2(d, w2) are full-column rank, and under As-
sumption 2 the matrix D(0, d, w2) is invertible for all w2 ∈ W2(d). Also, by Assumption
4 all diagonal entries of D(1, d, w2)D(0, d, w2)−1 are distinct. Finally, all first row en-
tries of G1(d, w2) and G2(d, w2) contain ones. We deduce from the following lemma the
identification of G1(d, w2), D(z, d, w2) and G2(d, w2).

Lemma (Whitening). Let P (0), P (1) ∈ RN×M be two matrices with similar algebraic
structure: P (z) = G1D(z)G⊤

2 , z ∈ {0, 1}, where G1, G2, D(z) satisfy the following restric-
tions: i) G1 ∈ RN×H and G2 ∈ RM×H are two full column-rank; ii) D(z) ∈ RH×H are
diagonal; iii) D(0) is non singular; iv) all diagonal entries of D(1)D(0)−1 are distinct; v)
the first rows of G1 and G2 are made of ones. Then, G1, G2, D(0) and D(1) are uniquely
determined by P (0), P (1).

Proof. Matrix P (0) has rank H and there exists a singular value decomposition: P (0) =
UΛV ⊤, where U ∈ RN×N and V ∈ RM×M are nonsingular orthogonal matrices with
U⊤U = IN , V ⊤V = IM and Λ ∈ RN×M is a rectangular diagonal matrix with non-negative
real numbers on the diagonal. The number of non-zero diagonal entries in Λ is equal to H.
Let Λ1 ∈ RH×H be the square diagonal matrix containing the non-zero singular values,
and let U = (U1, U2) and V = (V1, V2) partition the columns of Λ accordingly, so that
P (0) = U1Λ1V

⊤
1 .

Next, using the singular value decomposition of P (0), we have

Λ−1
1 U⊤

1 P (0)V1 = Λ−1
1 U⊤

1 U1Λ1V
⊤

1 V1 = IH .

Hence, Λ−1
1 U⊤

1 G1D(0)G⊤
2 V1 = IH . Define W = Λ−1

1 U⊤
1 G1 ∈ RH×H . The matrix W is

thus non singular and W −1 = D(0)G⊤
2 V1.

Now, we also find that

Λ−1
1 U⊤

1 P (1)V1 = Λ−1
1 U⊤

1 G1D(1)G⊤
2 V1 = WD(1)D(0)−1W −1.

The diagonal entries of D(1)D(0)−1 being distinct, they are uniquely determined as the
eigenvalues of the matrix Λ−1

1 U⊤
1 P (1)V1. However, eigenvectors are determined only up

to a multiplicative constant. So, let Ŵ be one matrix of eigenvectors. There exists a non-
singular diagonal matrix ∆ such that Ŵ = W∆ = Λ−1

1 U⊤
1 G1∆. Then, Λ1Ŵ = U⊤

1 G1∆.
It is not true that U1U

⊤
1 = IN because the columns of U1 are orthogonal but not its

rows. However, since the columns of U are orthogonal vectors,

U⊤
2 P (0) = U⊤

2 U1Λ1V
⊤

1 = 0(N−H)×M .

Hence, U⊤
2 G1D(0)G⊤

2 = 0(N−H)×M . As D(0)G⊤
2 ∈ RH×M is a full row-rank, it follows that
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U⊤
2 G1 = 0(N−H)×H. A similar argument implies that P (0)V2 = 0 since V ⊤

1 V2 = 0. Now,
since G1D(0) has rank H, it follows that G⊤

2 V2 = 0H×(M−H). From U⊤
2 G1∆ = 0(N−H)×H,

we deduce that  Λ1Ŵ

0(N−H)×H

 = U⊤G1∆.

Hence,

U1Λ1Ŵ = (U1, U2)
 Λ1Ŵ

0(N−H)×H

 = UU⊤G1∆ = G1∆.

Since G1 contains a row of ones, then the last equality implies that the diagonal of ∆
is identified by the first row of U1Λ1Ŵ . Then G1 = U1Λ1Ŵ∆−1 follows.

Lastly, we have ∆Ŵ −1 = W −1 = D(0)G⊤
2 V1. Applying the same argument as above,

we have that

W −1V ⊤
1 =

(
D(0)G⊤

2 V1, 0H×(M−H)

) V ⊤
1

V ⊤
2


=
(
D(0)G⊤

2 V1, D(0)G⊤
2 V2

)
V ⊤

= D(0)G⊤
2 V V ⊤

= D(0)G⊤
2 .

In the same way as above, the first row of G2 is made of ones, it follows that D(0) and
G2 are identified. Hence D(1) is also identified.

Step 3: Common labeling given d. In the previous step, we have identified

D(1, d, w2)D(0, d, w2)−1 = diag
[

π(h, 1, d)
π(h, 0, d)

]
h:f2(w2|h,d)̸=0

.

By Assumption 4, these eigenvalues are all different (and independent of w2). One can
thus relabel groups for each d so that the labeling is consistent for all possible choices of
w2. This also allows to identify the different supports W2(h, d).

Step 2 can be done for all wages w2 in the joint support W2(d) = ⋃
h W2(h, d). Thus,

we can sum D(0, d, w2) and D(1, d, w2) over w2 and eliminate f2(w2 | h, d) (which sums to
one on its support). This identifies π(0, h, d) and π(1, h, d) for all h. Knowing π(h, z, d)
and D(z, d, w2), we identify f2(w2 | h, d).

Since F1|2(w1 | w2, h, d) is already identified, then the Law of Total Probability implies
that F1(w1 | h, d) is identified. Also, we can take the grid of wages w1 as fine as we want.
Bayes’ formula therefore implies that F2|1(w2 | w1, h, d) is also identified.

Step 4: Common labeling across treatments. It remains to align the groupings
across treatments. This is done by remarking that F1(w1 | h) is independent of d (As-
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sumption 5) and therefore, can be used to make sure that the same groups have identical
labels across treatments.
Q.E.D.

B Sequential EM-algorithm formulas

We assume that the distribution of log-wages in period t, denoted wt, is Normal and
depends on type h and treatment d. Wages are given by the following expressions,

w1 = µ1(h) + u1, u1 ∼ N
(
0, σ2

1(h)
)

(12)

wt = µt(h, d) + ut, ut ∼ N
(
ρut−1, σ2

t (h, d)
)

, t = 2, 3 (13)

The complete individual likelihood is given by:

ℓih(β) = π(h, zi, di) f1(wi1 | h) f2|1(wi2 | wi1, h, di) f3|2(wi3 | wi2, h, di) (14)

We run the following procedure to estimate the parameters, iterating between an E-step
(in which we update the posterior probabilities) and an M-step (in which we choose
parameters to maximize the likelihood given the posteriors from the E-step).

E-step. The posterior probability of worker i to be of type h given data (i.e., the
conditional probability of h knowing i, also called responsibility), denoted pih, can be
computed with the help of contributions to likelihood, using Bayes’ rule. Let β(m) denote
an estimate of the parameters at the end of iteration m. More precisely, we have,

p
(m)
ih = ℓih(β(m))∑

h ℓih(β(m)) . (15)

M-step. In the M-step we update the parameters of the likelihood function sequentially.

1. For t = 1:

µ
(m)
1 (h) =

∑
i p

(m)
ih wi1∑

i p
(m)
ih

, (16)

(σ2
1)(m)(h) =

∑
i p

(m)
ih (u(m)

i1h )2∑
i p

(m)
ih

, (17)

with u
(m)
i1h = wi1 − µ

(m)
1 (h).

41



2. Then, for t = 2, 3,

µ
(m)
t (h, d) =

∑
{i:di=d}

p
(m)
ih

[
wit − ρ(m−1)u

(m)
i,t−1,hd

]
∑

{i:di=d}
p

(m)
ih

(σ2
t )(m)(h, d) =

∑
{i:di=d}

p
(m)
ih

[
u

(m)
ithd − ρ(m−1)u

(m)
i,t−1,hd

]2
∑

{i:di=d}
p

(m)
ih

,

where u
(m)
ithd = wit − µ

(m)
t (h, d), t = 2, 3.

Note that µt(h, d) now depends on ρ for t = 2, 3 because we impose µ1(h, 0) =
µ1(h, 1) = µ1(h), i.e., treatment d has no effect on pre-treatment wages, conditional
on type (h). If we relaxed this constraint, the estimator µt(h, d) would always be a
simple weighted average of wit.

3. Denote I(d) = {i : di = d}, then, we can update the autoregressive parameter ρ as
follows,

ρ(m) =

∑
h

∑
d∈{0,1}

∑
i∈I(d)

p
(m)
ih

 u
(m)
i1h u

(m)
i2hd

(σ2
2)(m)(h, d) + u

(m)
i2hdu

(m)
i3hd

(σ2
3)(m)(h, d)


∑

h

∑
d∈{0,1}

∑
i∈I(d)

p
(m)
ih

 (u(m)
i1h )2

(σ2
2)(m)(h, d) + (u(m)

i2hd)2

(σ2
3)(m)(h, d)

 .

4. Finally, the type-state probabilities π(h, z, d) are estimated as the average of poste-
rior probabilities

π(m)(h, z, d) = 1
N

∑
{i:zi=z,di=d}

p
(m)
ih .
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