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Abstract

Recent work has highlighted the significant variation in returns to higher edu-
cation across individuals. We develop a novel methodology — exploiting recent
advances in the identification of mixture models — which allows the returns to uni-
versity to vary across the (possibly multi-dimensional) ability distribution, a flexib-
ility missing from commonly used additive models, but which we show is empirically
important. We prove the non-parametric identification of our model. Estimating
our model on data from a UK cohort study, we find that: (i) the returns to higher
education are 3–4 times larger than the returns to prior cognitive and non-cognitive
abilities; (ii) although returns are generally increasing in both cognitive and non-
cognitive ability for both men and women, they vary non-monotonically across the
ability distribution.
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1 Introduction

Economists have long concerned themselves with estimating the wage returns to educa-
tion, beginning (at least) with Mincer in 1958. For almost as long, critiques of this work
have argued that a failure to control for ability has led to a significant “ability bias” in
estimates of the returns to education. These claims, whether well-founded or not (Gri-
liches, 1977), led to attempts to circumvent the ability bias problem using instrumental
variables. However, these estimates were higher than the ability-biased estimates, which
were themselves supposed to be biased upwards. This prompted a new approach, recog-
nising that the returns to education are not homogeneous, and so using different methods
and instruments would lead to different estimates (Blundell, Dearden, and Sianesi, 2005).

By allowing heterogeneous returns to higher education, we join this growing literature
which explicitly studies the variation in returns to a university degree across across in-
dividuals and groups of individuals. The variation in returns across different groups can
be considerable.1 However, there is little evidence on how the returns to education vary
with a fundamental characteristic, ability.2 Ability is important not only as a potential
source of bias; lessons from the literature on human capital formation3 suggest a person’s
ability is also likely to directly impact the returns they achieve from a university degree.
This paper develops and estimates a framework explicitly designed to investigate how the
returns to university vary flexibly with what we call “prior ability”: a young person’s
cognitive and non-cognitive ability on entry to university.

Our focus on cognitive and non-cognitive ability recognises the growing body of evidence
that skills are multidimensional, and that collapsing these dimensions into a single (usually
cognitive) measure misses important sources of variation across people.4 Our analysis

1Britton, Dearden, and Waltmann (2021a) investigate how the returns to university vary across socio-
economic and ethnic groups in the UK. They find positive returns to university for all groups, though
substantial heterogeneity: returns are higher for women than for men, and across ethnic groups they vary
from 7% for White British men, to 40% for Pakistani women. Britton, van der Erve, Belfield, Dearden,
Vignoles, Dickson, Zhu, Walker, Sibieta, and Buscha (2021b) study the returns to different subjects and
institutions, again finding substantial heterogeneity in the returns to different subject and institutions
after controlling for prior cognitive ability. They find weak evidence that returns are positively correlated
with the selectivity of the subject or institution.

2We use the terms “human capital”, “skills”, and “ability” interchangeably throughout this paper.
3Recent work by Cunha, Heckman and coauthors (2006; 2007a; 2008; 2010) has shown that skills

obtained early in childhood are vital for fostering skills later in childhood—a feature they call the self-
productivity of skills. A related concept is the complementarity of skill formation: “skills produced at one
stage raise the productivity of investment [in further skills] at subsequent stages” (Cunha et al., 2006, p.
703). These features of skill production during childhood suggest that ability on entry to university will
affect the impact of a university degree on an individual’s ability, and hence on their later outcomes.

4Focusing on educational outcomes, Jacob (2002) finds that non-cognitive skills are key in explaining
the gender gap in college attainment in the US, and Delaney, Harmon, and Ryan (2013) demonstrate
the link between non-cognitive skills and study behaviours known to be important for success in under-
graduate degrees. Turning to success later in life, Heckman, Stixrud, and Urzua (2006) offer evidence
that non-cognitive skills are important for a range of social and economic outcomes. Bowles, Gintis, and
Osborne (2001) survey the literature on the determinants of earnings, with a particular focus on non-

2



incorporates these insights by allowing both cognitive and non-cognitive skills to determine
wages, and hence the wage returns to a university degree. We compare results obtained
using only cognitive measures with those using both cognitive and non-cognitive measures,
thereby providing further evidence of the important role for non-cognitive ability.

A key contribution of our paper is methodological: we adapt the framework of Cassagneau-
Francis, Gary-Bobo, Pernaudet, and Robin (2021), where we proved the non-parametric
identification of, and developed an estimation strategy for, a model of formal training and
wages.5 This work continues a long tradition in economics of using discrete mixtures to
model heterogeneity, going back to Heckman and Singer (1984). In recent years, major
progress has been made in the identification of this type of model, and in the development
of nonparametric estimators (see for example Bonhomme, Jochmans, and Robin, 2016a
and the references therein). Here and in Cassagneau-Francis et al. (2021) we make novel
attempts at using discrete mixtures in the context of evaluation models.

Our statistical model, motivated by the human capital formation literature mentioned
above, builds upon the work of Heckman and coauthors (2003; 2006; 2007a; 2010). In
these papers, the analysis typically requires strong functional form assumptions to identify
the model, often assuming an underlying factor model structure (Carneiro et al., 2003).6

By adapting the framework in Cassagneau-Francis et al. (2021), we are able to achieve
identification of a yet more flexible model, estimate a non-linear version of our model,
and demonstrate the importance of these non-linearities empirically.7

In order to identify our non-linear model, we assume that the distribution of prior ability
(i.e. of latent types in our framework) is discrete. Our method is frugal in its require-
ments of the data available to the econometrician, and having discrete types means our
heterogeneity analysis is easily interpreted. The costs of this flexibility, frugality, and in-
terpretability are low: (i) we require, in addition to a measurement of each component of
ability and an outcome,8 a single crude (i.e. discrete) measurement of ability, or a discrete
instrument for university attendance (though exogeneity is only required conditional on
type), and (ii) we assume the distribution of prior ability has finite support.

cognitive traits. More recently, Todd and Zhang (2020) include personality traits in a dynamic discrete
choice model of schooling and occupational choice. The authors find important links between personality
and schooling, and between personality and occupational choice.

5Similar techniques have been used to identify a range of models including: firm and worker sorting
(Bonhomme, Lamadon, and Manresa, 2019); and the contributions of workers across different teams
(Bonhomme, 2021). Gary-Bobo, GoussÃ©, and Robin (2016) identify and estimate a parametric model,
also inspired by the human capital formation literature, to study the effects of grade retention on French
middle school students.

6Cunha et al. (2010) show how to relax some of the stronger assumptions, allowing the measurement
and outcome equations to be non-linear in their inputs.

7Cunha et al. (2010) only estimate the additive version of their model.
8Cunha and Heckman and coauthors require at least two measurements per component, plus an

outcome.
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Following Cassagneau-Francis et al. (2021), we show the non-parametric identification of
the returns to university conditional on an individual’s prior ability, which in our model
is summarised by their latent type. We can aggregate these type-conditional “treatment
effects” (TE) to obtain more standard effects: average treatment effect (ATE), average
treatment on the treated (ATT), and Imbens and Angrist (1994)’s local average treatment
effect (LATE). We can also aggregate the type conditional TEs to obtain analogues of the
usual OLS and IV estimates, which we show to be biased estimators of ATT (for OLS)
and LATE (for IV). Having shown non-parametric identification, we adapt our estimation
strategy from Cassagneau-Francis et al. (2021), specifying a parametric specification of
our model. This approach allows us to use a sequential version of Dempster, Laird, and
Rubin (1977)’s expectation-maximisation (EM) algorithm. We use a bootstrap procedure
to calculate standard errors.

In our application, we use our framework to estimate the returns to a university degree
in the UK as a function of cognitive and non-cognitive prior ability. Our data come from
the British Cohort Study (BCS 1970), which follows all individuals born in the UK in
a single week in 1970, and contains detailed information on the cohort members at age
16 (before attending university) and again at age 26 (after university). In particular, the
young people took cognitive tests and answered a series of questions to capture their non-
cognitive abilities at age 16. Crucially we also observe their wages at age 26, along with
any qualifications they have achieved up to that point and hence whether they graduated
from university.

We estimate our model separately by gender,9 a data-driven decision resulting in better
performance from our estimation algorithm. Although the graduation rates for men and
women are quite similar (33% for men, and 27% for women), there was a large gender
wage gap during this period (reflected in our data), both for graduates and non-graduates.
Our algorithm struggled to deal with this difference when we pooled genders.10 A large
and important literature attempts to uncover the institutional and societal factors driving
this gap, a task which is beyond the scope of this paper.

We find that the returns to a university degree for our UK cohort are generally positive
and large for both men (10–20%) and women (15–28%), but vary significantly with prior
ability—i.e. across individuals of different types in our framework. This variation is also
highly non-linear, with the size of the effect varying non-monotonically across the ability
distribution. However, these patterns are quite different across genders. For men, the
returns are U-shaped with respect to prior ability, with middle-ability types receiving

9Blundell, Dearden, Goodman, and Reed (2000) also estimate their model separately by gender, and
study a similar UK cohort born 12 years earlier than our cohort, though consider wages at 33, so 5 years
earlier than we observe wages.

10Estimating our model separately across genders is the most straightforward way to “control for”
gender in our framework.
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the lowest returns. The opposite is true for women, for whom we observe hump-shaped
returns with the highest for middle-ability types.

This non-linearity would not be apparent under the current leading estimation approaches
which assume an additive model for wages. In a linear (additive) model, the wage returns
to university are proportional to a young person’s ability level. Therefore, if the returns
to university are increasing in ability on average, we would estimate a higher return for a
high-ability young person than a low-ability young person—even if this relationship only
holds for part of the ability distribution.

Our analysis also reveals that the returns to a university degree in the UK are more
important than the returns to ability in the following sense: a low-ability young person can
earn higher wages by completing university, and becoming a low-prior-ability graduate,
than they could by improving their ability to become a high-ability non-graduate. The
large impact of university on wages across the ability distribution drives another of our
main results: the contribution of the graduate wage premium to wage inequality is 3
(men) and 4 (women) times larger than the contribution of ability attained prior to
university. Our results complement those of Cawley, Heckman, and Vytlacil (2001) who
find that, having controlled for educational attainment, cognitive ability explains little
of the variation in wages across individuals even within occupations. We find that both
cognitive and non-cognitive skills explain only a small part of wage inequality.

Despite the relatively small direct contribution of ability to wage inequality, a young
man’s levels of cognitive and non-cognitive skills on entry to university do influence the
returns they can expect to achieve. There is a significant comparative advantage for
non-cognitive skills among male non-graduates, resulting in low returns to university for
high non-cognitive-ability, middle-cognitive-ability men. The equivalent is not true for
women. To what extent this is due to the different occupations favoured by male and
female non-graduates remains a question for future research.

The remainder of the paper proceeds as follows. In section 2 we present the setup of our
model, with a discussion of identification in 2.1. Section 3 describes how we estimate
the model. We then turn to our application using UK-cohort data: estimating the wage
returns to a university degree as a function of cognitive and non-cognitive prior ability.
Section 4 discusses the relevant context of higher education in the UK, and presents our
dataset and some initial descriptive results. Section 5 presents the results of estimating
our model on this data, first with only cognitive ability, and then with both cognitive and
non-cognitive components. Section 6 concludes.
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1.1 Related literature

Returns to education. There is a long tradition in economics of attempts to estim-
ate the returns to schooling, a tradition which perhaps began with the seminal work of
Mincer (1958, 1974). Critiques of this early work suggested it was plagued by issues of
ability bias, which although arguably small (Griliches, 1977), led to a search for sources
of exogeneous variation and the use of IV methods to avoid this criticism. Card (1999)
provides an excellent summary. However, despite these methods being used to avoid the
positive ability bias, IV estimates of the returns to schooling are typically larger than
OLS estimates. These apparently contradictory findings were due to either an even larger
ability bias, for family background IVs, or particularly high marginal returns for those
impacted by institutional IVs — Imbens and Angrist (1994)’s local average treatment
effect, or LATE.

These high marginal returns estimated by IV methods highlighted another avenue to
explore: the returns to education are unlikely to be constant, varying with both observed
and unobserved characteristics. Initial work used sibling Altonji and Dunn (1996) and
twin (Ashenfelter and Rouse, 1998) studies to analyse the effects of family background on
the returns to education, finding little variation. Barrow and Rouse (2005), also focusing
on siblings, find little effect of race and ethnicity on the returns to education.

Much of this work focused on the return to an additional year of schooling. Other authors
have focused on the returns to educational milestones, with the returns to a university
degree being most relevant for this paper (see Kane and Rouse (1995) for evidence from
the US and Blundell et al. (2000) from the UK). Allowing returns to be heterogenous,
Carneiro, Heckman, and Vytlacil (2011) estimate returns to college that vary with the
unobserved cost of attaining a degree. A recent paper by Britton et al. (2021b) studies
how the returns vary across different degrees and institutions, as well as across different
socio-economic and ethnic groups. We join this growing literature on the heterogeneous
returns to a university degree, estimating wage returns which vary with both cognitive
and non-cognitive ability.

Another relevant strand of the literature compares the returns to ability with those to
education. Taber (2001) argues that the growth in the wage premium in the US in the
1980s is largely driven by an increase in the demand for high-skill (i.e. college-education)
workers. Cawley et al. (2001) find that cognitive ability explains only a small part of
wages once schooling is controlled for, and highlight that non-cognitive ability is also
important for labour marker outcomes.

Human capital formation and non-cognitive ability. The model in our paper is
inspired by the literature on human capital formation. This literature, which mainly fo-
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cuses on the production of human during childhood, contains a number of lessons relevant
for our analysis. Early work on human capital distinguished it from “ability”, as being
something that something that could be invested in, unlike innate ability which was in-
variant (Becker, 1964). The focus was entirely on cognitive ability (and human capital).
More recent work has argued that there is no true distinction between human capital and
ability — whether called skills, ability, or human capital, these traits are a product of an
individual’s genes, environment, and can be acquired and improved; and that both cog-
nitive and non-cognitive abilities are important, both for success during formative years
by fostering further improvements in these abilities, and also for later outcomes. These
findings are summarised by Cunha et al. (2006, henceforth CHLM) in an excellent review.

We borrow a number of insights from this literature. CHLM emphasise two key related
features of skill formation which we also incorporate into our analysis: (i) skills produced
at one stage of development are important for fostering skills at later stages, CHLM’s
“self-productivity” of skills; (ii) later investment in skills is necessary to fully realise the
benefits of earlier investments — in CHLM’s terminology the “complementarity” of skills.
Our contribution is to embed these insights from childhood development into a model
of investment in skills at a later stage of the life-cycle: higher education. We design a
framework to study the returns to higher education, explicitly allowing returns to vary
with prior cognitive and non-cognitive abilities. As far as we are aware, our paper is the
first to estimate a model of this type allowing for non-linear measurements and outcomes.

Model, identification and estimation. Our empirical framework is close in spirit to
the recent papers of Cunha and Heckman (2007a, 2008) and Cunha et al. (2010) who aim
is to estimate the technology of skill formation. Similar to the aforementioned papers,
we assume latent factors which link measurements and outcomes, and like Cunha et al.
(2010) we are able demonstrate the non-parametric identification of our model.

We depart from this work in assuming a discrete distribution for these latent types.
Similar assumptions have recently been used to model unobserved heterogeneity by a
number of authors. Bonhomme and Manresa (2015) investigate the properties of using
latent types (or groups) to capture (unobserved) heterogeneity, in a setting the authors
call “group fixed effects”. This type of setup is explored further in Bonhomme, Lamadon,
and Manresa (2022). These methods have been applied to study matched employer-
employee data (Bonhomme et al., 2019) and the contributions of individuals in team
settings (Bonhomme, 2021).

Closest to our work are the papers by Gary-Bobo et al. (2016) and Cassagneau-Francis
et al. (2021). Gary-Bobo et al. (2016) estimate the effects of grade retention on French
middle school students, while Cassagneau-Francis et al. (2021) estimate the wage returns
to formal training in France, both relying on discrete types to capture unobserved het-
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erogeneity. Both these papers employ on a differences-in-differences-like setup, observing
the same outcome before and after treatment — our paper adapts this method to allow
different measurements/outcomes before and after treatment.

We follow the identification proof in Cassagneau-Francis et al. (2021), which relies on
recent advances in the identification of finite mixtures, using matrix algebra to prove
identification. We refer the interested reader to a series of papers by Bonhomme et al.
(2016a); Bonhomme, Jochmans, and Robin (2016b, 2017) and citations therein, for further
details. We use Dempster et al. (1977)’s EM algorithm to estimate our model, following
both Gary-Bobo et al. (2016) and Cassagneau-Francis et al. (2021). This method has
been used widely in economics, providing a relatively straightforward method to estimate
models with “missing” data (our latent types). However, it can still be computationally
intensive, involving maximising complex likelihood functions. Arcidiacono and Jones
(2003) show how an alternative formulation of the problem allows sequential estimation,
allowing parameters to be updated separately.

2 Empirical framework

There are N young people indexed by i. We denote their (log)-wage by wi, observed
at age 26 when they are either university graduates, denoted di = 0, or non-graduates
(di = 0). Their wage depends on their ability before attending university, which we will
call “prior ability” and denote by θ, and on whether they graduate from university. Ability
is multi-dimensional. We focus on the two-dimensional case, in which individuals might
differ in their cognitive (θC) and non-cognitive (θN ) abilities. Then θ = (θC , θNC). The
different components of ability may or may not be correlated. Our aim is to estimate the
causal impact of graduating from university on wages, as a function of prior ability.

However, we do not observe ability (θ) directly. Ability is the classic confounder in
attempts to estimate the returns to university, being both a determinant of wages and of
the decision to attend university (Becker, 1964; Card, 1999). It is also more fundamental
to our analysis, given we want to study how the returns to university vary with prior
ability. We follow the example of both the recent literature on human capital formation
and on the returns to schooling (see for example Cunha and Heckman, 2007a; Carneiro
et al., 2011), relying upon noisy measurements of a young person’s prior ability. We have
(at least) one measurement specific to each ability, i.e. a purely cognitive measurement
and a purely non-cognitive measurement. Using the information on θ contained in these
measurements and in wages, we are able to identify and estimate the distribution of θ,
and hence study how the returns to university vary across this distribution.

We depart from this recent literature in how we model the dependence of measurements
and wages on ability. Typically, authors assume mean measurements and wages are linear
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functions of ability, with higher moments of the distribution independent of ability (see
for example Carneiro et al., 2003). A linear version of our model is presented and briefly
discussed in appendix A. We relax these assumptions, and imposing no functional form
on how the means of these distributions depend on ability, and we can allow the variance
to be a function of ability (though we do not in our application). To achieve this, we
assume the distribution of prior ability has finite support. Under this assumption, we
can classify individuals into a finite number of groups based on their prior ability, groups
across which the distributions of measurements and wages vary systematically. We denote
these groups by k ∈ {1, . . . ,K}. Therefore, ability takes only a finite number of values,
which we can index by the group identifier, k, so that θk = (θC

k , θNC
k ).

In addition to the continuous wages and measurements there is a discrete variable z, which
is either an additional (crude) measurement of ability, or an “instrument” for university
graduation. We do not include any other control variables when discussing identification,
or when estimating our model. However, adapting our proof and estimation strategy to
include controls would be straightforward, though it would require additional restrictions
on our model. We say “instrument” as z need only be independent of measurements and
wages conditional on prior ability, i.e. on a young person’s type. This idea is formalised
in our first assumption.

Assumption 1 (Measurements and wages). Measurements, wages and z are independent
conditional on type and education.11

We denote the distribution of wages conditional on type and education by fw(wi|k,d).
Similarly, the conditional distribution of the measurements is fℓ(M ℓ

i |k,d), ∀ℓ ∈ {C,NC}.
The probability mass of young people of type k ∈ {1, . . . ,K}, with value of the instrument
z ∈ {1, . . . ,Z}, and with education level d ∈ {0,1}, is denoted by π(k,z,d).12 We want to
identify and estimate these objects, along with the distribution of prior ability (θk,∀k =
1, ...,K). Before discussing our identification strategy, we present briefly the economic
foundations of our statistical model.

11Measurements need not be independent of each other even conditional on type.
12Our model is closely related to the extended Roy model (Heckman and Vytlacil, 2005; Carneiro,

Heckman, and Vytlacil, 2010; Carneiro et al., 2011):

w = w(k,0)+ [w(k,1)−w(k,0)]D
D = 1 if E[w(1)−w(0)|k] ≥ c(k,z),

where k is an individual’s type (capturing their cognitive and noncognitive ability). z is the instrument,
i.e. an environmental variable affecting treatment decision, through the non-pecuniary cost of attend-
ing university, but independent of wages and measurements conditional on type. w(k,0),w(k,1) are
treatment-specific outcome variables (random given k and independent of z). c(k,z) is cost of attending
university (random given k,z).
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Economic motivation for the model. Our statistical model is motivated by the lit-
erature on human capital formation. Consider a simple model of human capital formation
(Todd and Wolpin, 2003; Cunha et al., 2006). There are two periods: before university
(t = 0, age sixteen in our application); and after university (t = 1, age twenty-six in our
application). Human capital (ability) in period t+1 is a function of human capital in the
previous period, θt and any investments in human capital made between t and t+1, It.

θt+1 = fθ(θt, It) (1)

We can simplify the notation in equation (1) to include just this single period, between
t = 0 and t = 1, and we additionally assume that investment in human capital during this
period is binary: young people either attend and graduate from university or they do not.
We can also use k and θ0 interchangeably, so

θ1 = gθ(θ0,d) = g(k,d)

Then, if wages in t = 1 are a function of human capital in t = 1, we obtain our model for
wages

wi ∼ f̃w(w|θ1) = f̃w(w|g(k,d)) = fw(w|k,d).

2.1 Non-parametric identification

One of the key contributions of this paper is a novel identification and estimation strategy
that does not rely on wages and measurements being linear in their components. Our
strategy requires fewer measurements of prior ability for identification than the current
leading factor-model approach, and we are able to identify and estimate a fully non-linear
model.13 This frugality and flexibility come at a low cost, as compared with the linear
factor-model approach we additionally require: 1) a crude (can be binary or discrete)
measurement of prior ability,14 or a crude instrument for university attendance, and
which need only be exogenous of wages and measurements conditional on prior ability,
which we denote z; 2) that the distribution of prior ability has finite support.

We assume during our discussion of identification that the econometrician knows the true
number of points of support, K. However, we also discuss how this can be estimated when
we operationalise the method. Recall that our aim is to identify the discrete distribution
of prior ability, θk and π(k),15 the distributions of measurements and wages conditional

13Cunha et al. (2010) prove identification of a non-linear version of the factor model, but rely on
additively separable measurement and outcome equations when estimating their model. Their method
requires the same number of observations (measurements) as the linear model.

14This measurement is not really additional to the factor model; we could use one of the extra meas-
urements required in that approach, discretising the variable if it is continuous.

15Our method identifies π(k,z,d) which we can then sum over z and d to obtain π(k), the proportion
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on prior ability and education, fℓ(M ℓ|k,d) and fw(w|k,d).

Individual measurements and wages are not directly informative of prior ability due to
noise in these measures / outcomes. However, under our maintained assumptions, mean
wages and measurements across individuals of the same type—who share the same prior
ability, θ—are informative. Therefore we can use these means to identify the support of
θ, i.e. θk, and to set it in an interpretable metric allowing comparisons across types.

Likelihood of an individual’s observations. Under the model detailed at the start
of section 2, the likelihood associated with an individual i’s observations writes

ℓ(Mi,wi,di, zi) =
∑
k

π(k,zi,di)fM (Mi|k)fw(wi|k,d) (2)

with M = (M1, . . . ,ML), fM (M |k) =∏
ℓ fℓ(M ℓ|k).

We follow Cassagneau-Francis et al. (2021) and apply results from recent work on mixture
models to show the elements on the right-hand side of equation (2) are identified under
certain conditions (see Bonhomme et al. (2017) for details). A formal statement of the
necessary assumptions, our identification theorem and a detailed proof is in appendix B.
Here, we only summarise the key assumptions and ideas of the proof.

We have already introduced one of the main assumptions (assumption 1); that measure-
ments, wages and the instrument (if used) are independent conditional on type. This
allows for dependence of higher moments of the measurement and wage distributions on
latent types (i.e. on ability), not just the means of these distributions.16 The key here
is that all the dependence across wages and measurements is summarised by a person’s
type.

Next, we require the wage and measurement distributions (excluding z) to be continu-
ous, or at least sufficiently granular that the type-conditional wage and measurement
distributions are linearly independent. We cannot identify any latent types whose wage
(measurement) distribution is a linear combination of the wage (measurement) distribu-
tions of the other types.

There are then two conditions on the probability mass function, π(k,z,d). The role of z

in the identification is to form similar systems, one for each value of z. These systems are
similar in that they contain the same measurement and wage distributions, but we rely on
z to ensure they are sufficiently different to allow identification of all the components.17

of individuals of type k.
16This might be important as one can imagine some young people being particularly good (or bad) at

tests, a “skill” that would affect both their cognitive and non-cognitive scores, but one that might not
neccessarily be valued by employers.

17We refer the reader to the proof in appendix B for formal notions of similar and different in this
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For this, z either needs to be correlated with d, but not with wages (conditional on k) i.e. z

is an “instrument”; or z needs to be correlated with k, i.e. z is an additional measurement;
or both.

Finally, we need to label types consistently across values of d. Our method identifies
f(M |k,d), fw(w|k,d), and π(k,z,d) separately for each value of d. But, there are no young
people with all values of d that would allow us to label types consistently. Therefore we
need another assumption. We assume that the measurement distributions are independent
of education, conditional on type. Then, we can equate these distributions across values
of d to label k consistently.

Having identified these distributions, we are able to calculate heterogeneous returns to
university, conditional on prior ability. We are in a potential outcomes framework, with
each individual having two potential outcomes, w1 and w0, of which we only observe one.
The ATE under this framework is E[w1 −w0], although only E[w1 |d = 1] and E[w0 |d = 0]
are observed. If we believe that wages are correlated with education, then

E[w1 −w0] ̸= E[w1 |d = 1]−E[w0 |d = 0]. (3)

This is the classic problem of selection into treatment, where treatment in our case is a
university degree.

Fortunately, our maintained assumptions permit a solution. Potential outcomes are inde-
pendent of education and z conditional on prior ability, i.e. w1,w0 ⊥⊥ z,d |k. We can then
define the following type-conditional “treatment effect”.

Average treatment effect by type, ATE(k). This is the expected wage gain from a
university degree for a young person of type k, and perhaps the key object of our analysis:

ATE(k) ≡ E[w1 −w0 |k] = E[w1 |k]−E[w0 |k]
= µ1(k)−µ0(k).

In appendix C, we show how to aggregate these type-conditional returns to obtain the
usual estimands that analysts estimate when considering the returns to education—
average treatment effect (ATE), average treatment on the treated (ATT)—within our
framework. We also demonstrate some of the biases from which these standard estima-
tion approaches suffer.

The linear factor-model approach that the current state-of-the-art allows one to study the
heterogeneity in returns to education, and to compare the contribution of education to

context.
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wage dispersion with the contribution of prior ability. One can also study the correlation
between cognitive and noncognitive abilities. However, the linearity assumption shuts
down any interaction (e.g. complementarities) between the different components of prior
ability both on wages directly, and on the returns to education. This approach also
requires homoscedasticity: error terms cannot depend on the level of prior ability. We are
able to relax this assumption for both the wage and measurement equations.

3 Estimation strategy

Although the non-parametric identification proof detailed in appendix B is constructive
and hence suggests a method to operationalise our framework, we prefer an alternative
semi-parametric approach via the EM algorithm. In particular, this avoids the necessity
of discretizing the measurement and outcome distributions, allowing us to use all the
available information in these observations.

Following our approach in Cassagneau-Francis et al. (2021), we assume that the meas-
urements are normally distributed conditional on prior ability, and that log-wages are
normally distributed conditional on prior ability and education. Therefore, measurement
Mj has probability density function (PDF)

fj(Mj |k) = ϕ

(
Mj −αj(k)

ωj(k)

)
,

where ϕ(·) is the standard normal PDF.

Similarly, log-wages, w, are distributed as18

f(w|k,d) = 1
expw

ϕ

(
w −µ(k,d)

σ(d)

)
.

3.1 EM algorithm

Having made parametric assumptions, we can now use Dempster et al. (1977)’s expectation-
maximisation (EM) algorithm to estimate the parameters of the model via maximum
likelihood (ML). The computational burden can be further reduced by applying Arcidi-
acono and Jones (2003)’s sequential-EM algorithm which avoids having to estimate many
parameters in one step.

18We could allow for heteroscedasticity here, i.e. for the variance of wages to depend on type as well as
education, but we found that the algorithm performs better when only the mean of wages varies across
types, and not the variance. This may be a consequence of the relatively small samples that we use in
the application.
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The ML estimator of the parameters, Ω = {π(z,d|k),αj(k),ωj(k),µ(k,d),σ(d)}, satisfies

Ω̂ ≡ argmax
Ω

N∑
i=1

ln
∑

k

pkℓ(Ω;Mi,wi, zi,di,k)


where ℓ(Ω;Mi,wi, zi,di,k) = π(z,d |k)fm(M |k)fw(w |k).

The sum inside the logarithm prohibits sequential estimation of the parameters in Ω.

Arcidiacono and Jones (2003) show the same Ω̂ satisfies

Ω̂ ≡ argmax
Ω

N∑
i=1

K∑
k=1

pi(k|Ω)lnℓ(Ω;Mi,wi, zi,di,k) (4)

where
pi(k|Ω) ≡ Pr(k|Mi,wi, zi,di; Ω̂, p̂) = p̂kℓi(Ω̂;Mi,wi, zi,di,k)∑K

k=1 p̂kℓi(Ω̂;Mi,wi, zi,di,k)
and

p̂k = 1
N

N∑
i=1

pi(k|Ω̂).

Crucially, the right-hand side of (4) lends itself to sequential estimation.

3.2 Bootstrap

As in Cassagneau-Francis et al. (2021), we use a bootstrap procedure to obtain standard
errors and confidence intervals for our estimates to account for the random nature of the
estimation algorithm. We follow the advice of O’Hagan, Murphy, Scrucca, and Gormley
(2019) who recommend using a weighted-likelihood bootstrap (WLBS) to prevent groups
from disappearing in any samples. The WLBS involves drawing N positive, non-zero
weights from the Dirichlet distribution (which sum to N) ensuring that no observations
are completely dropped from any sample. The procedure is computationally intensive as
it involves re-estimating our model on 500 such weighted samples. To speed up the pro-
cedure and ensure consistent labelling we use the full-sample model estimates as starting
values for each bootstrap estimation. We obtain 500 “bootstrapped estimates” for each
of our model parameters and can obtain standard errors as standard deviations of these
bootstrapped estimates, and confidence intervals from the corresponding quantiles.

4 Application: returns to a UK university degree

We now turn to our application, in which we estimate the returns to a university degree
in the UK, as a function of prior ability. To achieve this aim, we apply the framework
described in section 2 to data from the 1970 British Cohort Study (BCS 1970), following
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the estimation strategy outlined in section 3. We first briefly describe the context of
higher education in the UK at the time our data was collected, then discuss the data and
the specific variables used to estimate the model. The results follow in section 5.

4.1 Higher education in the UK

The higher education system in the UK has a number of features that make it well suited
to studying the returns to a university degree in general, as we do in this paper, rather than
taking a more granular approach allowing for different types of institutions and degrees.
The institutions in the UK were relatively homogenous in what they offer to students. All
degree-granting institutions are privately run, and in receipt of government funding.19 The
standard degree offered by a UK university is a three-year bachelor’s degree specialising in
a single subject, with students generally entering university at age 18 or 19.20 The student
is then awarded a Bachelor of Arts (BA, in arts or humanities subjects) or a Bachelor of
Sciences (BSc) in that subject upon graduation.21 Most universities offer students a wide
range of subjects, and have large student bodies, with the largest having nearly 19,000
undergraduate students enrolled in 1994 (HESA, 1996).

A crucial difference across institutions is in their selectivity; universities were able to select
students based on their prior attainment at school (as well as at interviews). Therefore,
any differences across universities are not likely to be separable from differences in prior
ability, a dimension which we explicitly allow returns to vary across in our analysis. Al-
lowing for different types of institution by selectivity would likely not change our analysis.
A consequence of the stratifying of universities by ability, however is that we cannot rule
out that differences across individuals with different abilities are due to their attendance
at different institutions and not due to interaction between ability and higher education.
Separating these effects remains a question for future research.

There were no tuition fees for domestic students during the period when young people in
our sample were at university, and there was a system of means-tested grants and loans
for “maintenance”, i.e. designed to help students cover their living costs (Greenaway and
Haynes, 2003). In addition the dropout rate is particularly low, with around 90% of
students completing the degree they started in 1989/1990 (Smith and Naylor, 2001). In
the UK, leaving home to attend university is a major part of the experience. In the late
1980s and early 1990s when our cohort members were most likely to be at university, over
90% of university students did not live at home (HEFCE, 2009).

19There was one university in the UK which did not receive government funding at this time, and was
instead run as a charity; the University of Buckingham.

20Figure E1 in appendix E contains a detailed timeline of the university application process.
21There are a number of other subjects that have their own official title and abbreviation, such as the

Bachelor of Laws (LLB), and Bachelor of Engineering (BEng).
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In terms of demographics, 46% of women and 49% of men at the “typical age of gradu-
ation” in 1996 held an undergraduate degree, with over 13% of both genders also holding
a higher degree (OECD, 1998, p. 200). Splitting the population by social class, in 1991
less than 10% of those whose main parent was in the three lowest social classes22 enrolled
in university, while over 35% of children of parents in intermediate roles, and over 50% of
children of professional parents enrolled in university (Dearing, 1997). In this paper we
abstract from any analysis by family background, focusing only on the role of ability.

4.2 Data

Our data is from the 1970 British Cohort Study (BCS), an ongoing longitudinal cohort
study of every person born in the United Kingdom in a week in April 1970. There were
16,568 initial cohort members (CMs), who have been contacted roughly every five years
since their birth, with eleven completed “sweeps” to date. The latest sweep is currently
underway in 2021 (with the CMs aged 51). In each sweep the CMs (and/or their families)
are interviewed about their current circumstances and daily life, with more specific focuses
at different stages of their lives. Relevant for the analysis in this paper are measures of
cognitive (reading and mathematics tests) and non-cognitive (locus-of-control, self-esteem,
mental health) abilities from age 16, and information on qualifications and wages at age
26.

We therefore focus on the fourth sweep,23 which took place in 1986 (when the CMs were
aged 16), and on the fifth sweep which took place a decade later in 1996 (when the CMs
were aged 26). These sweeps provide information from just before the decision to attend
university, which is generally made at age 17 in the UK, and from when the majority
of young people who would attend university have completed their degrees and entered
the labour market. We split the sample by gender and estimate the model separately for
men and women to enable comparison with previous work on the returns to education
during this period, and because there is a significant gender pay gap in the data, both for
graduates and non-graduates. Investigating the mechanisms behind the gender pay gap,
though interesting and vital, is beyond the scope of this paper.

Table 1 describes the variables that we use to estimate our model. To arrive at our
subsample, any CMs who did not respond at either the age 16 or age 26 sweep are
dropped. Cohort members are also dropped if they: were not working at age 26; did

22In the UK the six social classes are: professional (I), intermediate (II), skilled non-manual (IIIn),
skilled manual (IIIm), partly skilled (IV) and unskilled (V).

23The fourth sweep was called Youthscan at the time, and the data collection was carried out by the
International Centre for Child Studies. Information was collected from the cohort members themselves,
their parents, and their schools (teachers and head teachers). The survey instruments used include
questionnaires (both face-to-face and self-completion), medical examinations, diaries, and educational
assessments.
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Table 1: Description of variables used to estimate our model

Variable Description
Wage, W Usual weekly wage in GBP reported by the cohort member

if employed at age 26. w ≡ log(W ).
Cognitive score, MC Mean standardised score (out of 100) across reading and

mathematics tests taken by the cohort members as part of
the study at age 16.

Non-cognitive score, MNC Mean standardised score (zero mean, unit variance) across
three measures of “personality”: self esteem, locus of con-
trol, and the general health questionnaire.†

Desire to leave home, z Response of cohort member at 16 to the question: “How
much do you think [living away from home] will matter to
you as an adult?”.‡

Education, d A indicator for whether the cohort member reports holding
at least an undergraduate degree at age 26.

Notes: Conti and Heckman (2010) use similar measures from the same dataset to capture non-
cognitive abilities and their effects on later health outcomes. †The general health questionnaire
(GHQ) is a series of questions designed to predict susceptability to mental health issues. ‡Possible
responses: “Matters very much”; “Matters somewhat”; “Doesn’t matter”.

not take a reading nor a maths test at age 16; did not provide responses to any of the
non-cognitive measures;24 are missing information on their highest qualification; or did
not respond to the question about leaving home. Finally we trim the sample on wages
to keep only those observations with wages between the 1st and 99th percentiles. Table
2 contains summary statistics for the subsample we use for our analysis, pooled and split
by education and gender. Wages (W ) are increasing in education (d) for both men and
women. We denote log-wages by w. The mean graduate (d = 1) wage for women is
below that of non-graduate men, despite women having similar cognitive test scores and
higher non-cognitive measures, supporting our decision to estimate the model separately
for men and women. Cognitive (MC) and non-cognitive (MNC) measures are positively
correlated with education for both men and women. Our “instrument” (z), a measure of
how strongly an individual wishes to leave home, is positively correlated with holding a
degree (d = 1) at age 26.

We say “instrument” as z is subject to much weaker exogeneity requirements than a usual
instrument. In fact, z need not be an instrument for schooling at all. The conditions
z must satisfy are that: (i) it is correlated with type (k) or education (d), and (ii) it
is independent of wages conditional on k and d. In our application z is an instrument,
and therefore we only require that z is independent of wages conditional on type (and
education).

24We keep individuals for whom we have an incomplete set of cognitive or non-cognitive scores and
compute the mean of non-missing scores.
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Table 2: Summary statistics for the analysis subsample split by sex and education

Gender: All Male Female
Education: All D = 0 D = 1 All D = 0 D = 1
Weekly wage (age 25, GBP, W )

Mean 239 286 263 334 209 197 241
Std dev. 408 480 481 474 350 388 212

Degree 0.29 0.32 0 1 0.27 0 1
Male 0.40 1 1 1 0 0 0
Ability measures (M)

Cognitive 57.0 57.8 54.3 65.3 56.5 53.6 64.4
Reading 46.1 46.0 43.0 52.4 46.1 43.6 53.1
Mathematics 40.8 41.4 38.6 48.2 40.5 38.1 47.2

Noncognitive 0.13 0.09 0.01 0.26 0.16 0.10 0.34
Self-esteem 16.5 16.5 16.1 17.3 16.5 16.2 17.1
Locus-of-control 14.3 14.4 14.1 15.0 14.3 14.2 14.5
GHQ† 1.55 1.26 1.23 1.33 1.74 1.60 2.13

Leaving home matters... (z)
...very much 0.19 0.14 0.13 0.17 0.22 0.20 0.27
...somewhat 0.48 0.47 0.46 0.50 0.48 0.47 0.50
...doesn’t matter 0.33 0.39 0.41 0.34 0.30 0.32 0.23

N 1876 745 509 236 1130 827 304
Notes: The values in the table are the mean value of that variable among the population
indicated by the column headings, unless otherwise specified. The notation used in the model
is in parentheses on the table to highlight which variables in the data correpond to which in
the model.
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Table E1 in the appendix presents the results of a balancing exercise to provide evidence
on the validity of the instrument. This exercise consists of a series of regressions with key
(excluded) characteristics as the dependent variable in each regression, and the cognitive
and non-cognitive measures, an indicator for females, and our instrument as covariates.
The dependent variables are: parental income (in bands); father’s (or mother’s if father
is absent) social class; self-assessed health; whether the young person lived in a city,
town, village, or the countryside; and whether the young person is white. These are all
observed at age 16. The results are reassuring, with the majority of the coefficients on
the instrument not statistically significant, even at the 10% level. Self-assessed health
at age 16 is the only exception. Table E2 (also in the appendix) contains the results of
a multinomial logit with the young person’s region of residence as the dependent, and
suggests no evidence of correlation between region and the instrument once we control for
prior ability using our measurements. Our balancing exercise suggests the desire to leave
home is uncorrelated with other characteristics that might determine wages conditional
on prior ability, and is a valid “instrument” for our purposes.

5 Results

This section presents the results of estimating our model on data from the BCS 1970 as
we described in the previous sections.25 We first discuss how to choose the number of
types, K, which is also the number of points of support for the distribution of prior ability.
We then present results by type using only cognitive ability measurements. This is not
our preferred specification. However, non-cognitive measurements are rare, especially in
adminstrative datasets, and therefore it is informative to see how our method performs
with only cognitive measures. We then estimate our preferred specification which in-
cludes measures for both cognitive and non-cognitive prior ability, and finally we compare
aggregate results across specifications, and to estimates obtained using more standard
estimators.

Throughout this section we label types so that k is increasing in the mean wages of those
without a degree, µ(k,0). By estimating the model separately for men and women, we
may estimate a different set of types for men and women, especially if prior ability and
wage distributions differ across genders. However, we can compare types within and across

25We use the sequential EM algorithm presented in section 3 and appendix D to maximise the sample
likelihood (4). We run kmeans on M and w to obtain starting values for π(k), α(k), and µ(k,d). We
also tried using different starting values and selecting the results with the highest likelihood, but using
kmeans always produced a likelihood at least as high as the best among the randomly chosen starting
values. We use the R programming language to implement our method. The algorithm is relatively fast
to converge in our application, taking under one minute on a laptop with a quad-core Intel Core i7-6560U
CPU (2.20GHz) processor and 16GB of memory, running Linux (Fedora OS). The variables we use as w,
M , z, and d are detailed in table 1.
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genders using the type-conditional means of ability, αC(k), and of wages, µ(k,d).26

5.1 Choosing K

The econometrician must set a number of types, K, before estimating the model, and so
we estimate the model for K between 2 and 20 and use a range of criteria to select the
best choice. What we call the likelihood criteria, displayed in figure 1a for the model with
only cognitive ability measures estimated on men, are the log-likelihood and the penalised
log-likelihood. We are looking for elbows where the slope of the plotted line decreases
(all criteria) or maxima (AIC, BIC). The plots in figure 1a suggest picking a value of K

less than 7, although the BIC is uninformative. We also study the aggregate results for
different K to see if there are any clear patterns, or whether any values of K appear to
produce anomalous results. Figure F7 in the appendix is an example of how estimated
aggregate returns vary with K.

We also use as a criterion the entropy of the assignment to groups: the uncertainty or
“fuzziness” in the assignment, which we assess by studying the distribution of the posterior
probabilities, pi(k). Stronger assignments have clearer modes of the posterior probability
distribution at 0 and 1. Figure 1b displays the distribution of posterior probabilities for
the same model as figure 1a estimated on women. We would choose K = 2 or 3 based
on this evidence. The likelihood criteria and posterior probability distributions for other
models and samples are shown in appendix F.1. In general the likelihood and entropy
criteria suggest we want to select the lowest values of K which capture key patterns in
the results.

5.2 Measures of cognitive ability only

We first present estimates obtained using only cognitive measures of ability. Although this
is not our preferred specification, datasets containing only measures of cognitive ability are
generally much more widespread than those containing non-cognitive measures (or both),
especially in large administrative datasets (so-called “big data”). Therefore, comparing
our method using only cognitive measures with our preferred specification is important
for understanding the possible limitations of these much larger (in terms of observations),
though much less rich (in terms of information) datasets.

Table 3 displays these results for K = 3. The results for other values of K, which are
broadly similar, are in the appendix (figure F5). Although there is a significant gender
wage gap, each of the three types are close in terms of cognitive ability between males
and females. For example type 1 men have a mean cognitive score of approximately 45,

26Recall that under our model of (noisy) measures and outcomes, the type-conditional means are
directly informative of prior ability, although individual measures and outcomes are not.
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Figure 1: Criteria to select the number of types, K

(a) Likelihood criteria (cognitive measure, males)

Notes: In the top-left panel (“logLikelihood”) we plot the loglikelihood (L) of the model against the
number of types. In the top-right panel (“AIC”) is the negative of the Akaike Information Criterion
(AIC), with AIC = lnL − 2k, where k in the number of free parameters. Finally the bottom-left panel
(“BIC”) plots the negative of the Bayesian Information Criterion (BIC), with BIC = lnL− k

2 ln(n), with
n the number of observations. We are looking for “elbows” (all) and maxima (AIC and BIC). The hollow
circles indicate instances in which the algorithm had not converged within 400 iterations.

(b) Distribution of posterior probabilities (cognitive measure, females)

Notes: Each panel represents a different number of types, K. The bars show the distributions of posterior
probabilities, pi(k), coloured according to the value of k. Up to K = 4 there are modes at 0 and 1.21



Table 3: Results by type (K = 3, cognitive measures only)

(a) Male

Type (k) 1 2 3
Degree 0 1 0 1 0 1
Return to a degree 0.179 0.140 0.239

Wage (age 25, GBP)
Mean 205 246 221 254 230 292

Ability measures, E[M ℓ|k,d]
Cognitive 44.0 43.4 60.8 60.6 77.2 77.4
Non-cognitive -0.07 0.23 0.06 0.25 0.16 0.28

π(k) 0.32 0.03 0.32 0.17 0.05 0.12

(b) Female

Type (k) 1 2 3
Degree (d) 0 1 0 1 0 1
Return to a degree 0.222 0.286 0.188
Wage (age 25, GBP)

Mean 147 184 158 210 188 227

Ability measures, E[Mj |θk,d]
Cognitive 40.1 36.8 58.3 58.0 77.8 77.6
Non-cognitive 0.03 0.34 0.12 0.35 0.25 0.31

π(k) 0.21 <0.01 0.49 0.17 0.02 0.09

Notes: The tables in panel (a) and (b) present the key parameter estimates from
our model, and their transformations. The returns are in log-differences and are
simply the within-type difference between graduate and non-graduate mean log-
wages (µ(k,1) − µ(k,0)). The mean wages at 25 are the type-conditional mean log-
wages exponentiated to give weekly wages in GBP, exp[µ(k,d)]. The cognitive and
non-cognitive scores are simply the estimated type-conditional means, and the type
proportions are the mean across all men or women of the posterior probabilities,
pi(k), for each type, k.
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while type 1 women have a mean cognitive score of 40. Despite having lower wages and
similar cognitive scores, the mean non-cognitive scores of the female types are higher
than those of the equivalent male type. This highlights the importance of studying men
and women separately as they likely face different prices for their abilities on the labour
market. Table 3 also splits the type-conditional means by education, d. For the cognitive
measure used to estimate the model, the mean functions appear to be independent of
education. However, the non-cognitive ability measure is correlated with education even
within types.

Returns to a degree at each level of prior ability are generally higher for women then
men, except for those with the highest cognitive ability. The pattern of returns across
prior (cognitive) ability also differs across genders. The pattern for men is U-shaped, with
those in the middle of the prior ability distribution experiencing lower returns than those
with high or low cognitive ability. For women returns are hump-shaped with respect to
prior cognitive ability, with middle types enjoying the highest returns to university. These
patterns are clearest in figure F5 in the appendix. These non-linearities in returns with
respect to cognitive ability highlight the importance of a framework such as ours which
does not impose linearity. Given the correlation within types between non-cognitive ability
and education, we will withold judgement on whether this pattern of returns to university
is robust to the inclusion of both cognitive and noncognitive measures until we present
the results of our preferred specification.

This correlation between non-cognitive ability measures and education is apparent in fig-
ure F6, where each type is plotted in the space of cognitive and non-cognitive skills. For
both men (F6a) and women (F6a) there are large differences within types in terms of
non-cognitive ability between graduates (blue) and non-graduates (red). Our method can
be considered a matching estimator, comparing the outcomes of individuals who gradu-
ate from university, with those possessing the same latent characteristics (as captured
by their ability measurements and wages) who do not graduate from (or even attend)
university. A key takeaway from this analysis is that when we include only a cognitive
measure in our model, we are only successful in matching along the cognitive dimension.
Therefore, despite the correlation between cognitive and non-cognitive skills it appears
to be important to include a measure of non-cognitive ability in the model. This raises
questions about the limitations of large administrative datasets, which lack non-cognitive
measures, for analyses of the returns to education. Further work is needed to determine
whether there are other variables that can be used to proxy for this missing information.

5.3 Measures of cognitive and noncognitive ability

We now present the results of our preferred specification, which includes measures of both
cognitive and non-cognitive ability. We estimated the model separately for females and
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males in our sample, as these groups appear to face different prices for their skills. We
present estimates obtained with K = 5 as that is the smallest K which captures key trends
and allows us to study variation in both components of ability. We discuss the results for
each gender separately. However, before getting to our results we first spend some time
explaining the plots in figures 2 and 3 as they are quite particular to our analysis.

The plots in panel (a) of figures 2 and 3 show the same information as those in figure
F6 for our model with cognitive and non-cognitive ability measures. The axes represent
cognitive (x-axis) and non-cognitive (y-axis) ability measures, so that the location of the
circles representing each type-education group reflects their relative prior ability levels.
Moving north on the plot represents an increase in the mean non-cognitive ability measure,
and moving east represents an increase in the mean cognitive ability measure. The sizes
of the circles represent the sizes of the type-education groups, with types labelled in black
text, and graduates represented by blue circles and non-graduates by red. Including non-
cognitive measures was successful in one sense at least; both cognitive and noncognitive
abilities are now independent of education within types. Individuals are well-matched
across education groups on both cognitive and non-cognitive skills, in contrast to figure
F6. Once again types are labelled so that k is increasing in the mean wages of non-
graduates, µ(k,0).

Turning next to panel (b) of figures 2 and 3, the plots are drawn on the same axes as the
plots in panel (a), so the location of the circles again reflects the mean ability measures
of that type, now averaged across graduates and non-graduates of each type. However, in
panel (b) the sizes of the circles represent mean log-wages for each group, with filled circles
representing non-graduates, and hollow circles representing graduates. The difference in
size between the filled and hollow circles therefore reflects the type-conditional wage return
to university, a value which is also labelled on each filled circle in white. These returns
are measured in log-wage differences.

5.3.1 Females

Our main results for women are presented in figure 2 and table 4a. Focusing first on
the type-education group sizes displayed in figure 2a, university graduation is generally
increasing in both cognitive and non-cognitive prior ability. This is reflected by the
increasing size of the blue circles relative to the red as we move north-east. However, the
relationship is stronger for non-cognitive prior ability. The type-conditional graduation
rate,27 denoted Pr(d = 1|k) in table 4a, are highest for types 4 and 5, the types with the
highest non-cognitive prior ability.

The presentation in figure 2 allows one to easily compare the relative cognitive and non-
27This graduation rate is the percentage of all young people (in our analyis) of that type who have

graduated from university by age 26.
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cognitive abilities for each type, and assess how varying these components affects the
returns to university. However, it is difficult to see how to combine the two components
into an overall measure of ability. For this we turn to table 4a and remind the reader that
types are labelled by non-graduate wage, which is a proxy for overall prior ability, or at
least a measure of the relative values of cognitive and non-cognitive abilities on the labour
market. Therefore, we can study how returns vary with overall prior ability by studying
how they vary across types. The general pattern of returns in table 4a is hump-shaped,
with the highest returns to university being achieved by those in the middle of the prior
ability distribution. This pattern is most clear in 4a.28 The returns are still large at
around 15 log points for those at the top and bottom of the prior ability distribution,
but reach nearly 30 log points in the middle of the distribution. The graduation rates for
these types is relatively low, with only 22% of those with the highest return to a degree
(type 3) actually graduating from university. The graduation rate improves for type 4,
the group with the next highest return, but still less than half of these young women are
graduates at age 26.

Returning to figure 2b we can see how the different components of ability impact returns.
Given the locations of the five types in cognitive-non-cognitive ability “space”, it is not
immediately obvious how to separate the effects of the two components (the types are
not on a “grid”, i.e. no two types share the same level of either component). However,
some types are similar in one component. For example, moving from type 1 to type 2,
involves an increase in non-cognitive ability and a slight decrease in cognitive ability. The
returns to university are higher for type 2, suggesting at least at the lower end of the
ability distribution increasing non-cognitive ability has a positive effect on returns.

Moving from type 2 to type 3 represents a large increase in cognitive ability and a small
increase in non-cognitive ability, and results in both an increase in non-graduate wages
and in the returns to a degree. Conversely, moving from type 2 to type 4 represents a
small increase in cognitive ability, and a large increase in non-cognitive ability, and again
we see increases in both non-graduate wages and the returns to university. This suggests
that in this portion of the ability distribution cognitive and non-cognitive abilities are
broad substitutes, for both graduates and non-graduates. Finally comparing types 3 and
4 to type 5, the returns to university fall, though this is driven by the relatively high non-
graduate wages earned by type 5 women. These young women have the highest cognitive
ability, but lower non-cognitive ability than type 4 women, suggesting high cognitive
ability women have a comparative advantage as non-graduates (relative to their lower
cognitive ability peers), though they still benefit from a university degree.

28The x-axis in 4a is not type, but type-conditional graduation rate, Pr(d = 1|k). For women, this
results in the same ordering as using µ(k,0).
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Figure 2: Group sizes, locations and wage premia in cognitive-noncognitive ability space
(females, K = 5, cognitive and non-cognitive measures)

(a) Group sizes and locations

(b) Wage premia

Notes: Panel (a) display the mean abilities (circle position) and group size (circle sizes and labels) for
each type, split education (colour). Blue circles represent graduates and red non-graduates. The size of
each type-education group is labelled, along with each type. Panel (b) shows the distribution of wages
and wage premia by type, in the space of abilities. The positions of the circles correspond to the cognitive
and non-cognitive abilities of that type. The areas of the filled circles are proportional to non-graduate
log-wages, and of the hollow circles to graduate log-wages. Then the difference between the areas of filled
and unfilled circles is the graduate wage premium, as a difference in log-wages. This wage premium is
also labelled in white on each circle.
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5.3.2 Males

We turn now to the results for young men, presented in figure 3 and table 4b. The male
types follow a broadly similar pattern to those for women, with the bottom two types
sharing similarly low levels of cognitive ability, and the key difference between type 1
and type 2 being their non-cognitive ability (see figure 3a). The university graduation
rate, Pr(d = 1|k) is also generally increasing with type, although type 3 men are slightly
less likely to graduate from university than their type 2 peers (table 4b). Similar to our
findings for women, non-cognitive ability seems important for gaining a university degree.

There is no clear pattern in returns with respect to overall prior ability, measured by
non-graduate wages. If we instead order types by graduation rate, as in figure 4b, the
returns follow a U-shaped pattern.29 The U-shape is quite pronounced, with the least
and most likely types to graduate from university enjoying returns of over 21 log points,
while the “middle” types in terms of graduation rates both having returns below 15 log
points. The returns are large for all types at over 11 log points, although the two types
with the highest returns enjoy nearly double that of the type with the lowest return.

We can also compare types by the cognitive and non-cognitive components of their prior
ability, not only their overall prior ability (non-graduate wage). Doing so, we see that
types 2 and 4, whose non-cognitive ability is relatively high compared to their cognitive
ability, have relatively low returns to a university degree. Moreover, those types with
relatively high cognitive ability (types 3 and 5) enjoy the highest returns to university.
Although prior non-cognitive skills appear to increase the likelihood of all young people
gaining a degree, for men it is the interaction of prior cognitive skills with higher education
that is most valued on the labour market.

Our results suggest that male graduates and non-graduates enter quite different occupa-
tions, where prior cognitive skills are better rewarded for graduates, while non-cognitive
skills are (relatively) better rewarded for non-graduates. This is despite non-cognitive
ability apparently increasing the likelihood of a young person graduating from university.
The same cannot be said for women, whose (prior) cognitive and non-cognitive skills ap-
pear to be similarly substitutable for both graduates and non-graduates. The analysis in
our paper has abstracted from considering occupations separately, including the effects of
occupational choice in the “black box” that is the impact of a university degree. However,
opening up this black box, including gaining a deeper understanding of how the occupa-
tions graduates choose differ from those chosen by non-graduates, will be a key focus for
future research.

29This way of presenting the type-conditional returns is useful as it allows comparison with the marginal
treatment effect of Heckman and Vytlacil (2005). Type 1 isomitted from this plot, in part due to its
graduation rate of approximately zero.
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Figure 3: Group sizes, locations and wage premia in cognitive-noncognitive space
(males, K = 5, cognitive and non-cognitive measures)

(a) Group sizes and locations

(b) Wage premia

Notes: Panel (a) display the mean abilities (circle position) and group size (circle sizes and labels) for
each type, split education (colour). Blue circles represent graduates and red non-graduates. The size of
each type-education group is labelled, along with each type. Panel (b) shows the distribution of wages
and wage premia by type, in the space of abilities. The positions of the circles correspond to the cognitive
and non-cognitive abilities of that type. The areas of the filled circles are proportional to non-graduate
log-wages, and of the hollow circles to graduate log-wages. Then the difference between the areas of filled
and unfilled circles is the graduate wage premium, as a difference in log-wages. This wage premium is
also labelled in white on each circle.
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Table 4: Type-conditional mean ability measures and wages
(K = 5, cognitive and noncognitive measures)

(a) Female

Type (k) 1 2 3 4 5
Returns 0.150 0.219 0.278 0.267 0.164

(0.086) (0.051) (0.129) (0.045) (0.047)
Pr(d = 1|k) 0.02 0.04 0.22 0.47 0.70
Education (d) 0 1 0 1 0 1 0 1 0 1
Wage (age 25, GBP)

Mean 143 166 151 188 154 204 163 213 192 227
(12.8) (11.7) (2.83) (9.35) (9.09) (36.6) (4.86) (7.15) (5.16) (8.20)

Ability measures
Cognitive 47.9 46.9 47.2 46.2 67.9 68.1 54.8 54.7 78.3 77.7
Non-cognitive -0.16 -0.18 -0.02 0.01 0.10 0.14 0.40 0.45 0.36 0.33

π(k,d) 0.02 <0.01 0.42 0.02 0.11 0.03 0.14 0.12 0.04 0.10

(b) Male

Type (k) 1 2 3 4 5
Returns 0.024 0.157 0.228 0.115 0.216

(0.051) (0.108) (0.167) (0.067) (0.079)
Pr(d = 1|k) <0.01 0.13 0.09 0.46 0.73
Education (d) 0 1 0 1 0 1 0 1 0 1
Wage (age 25, GBP)

Mean 207 212 207 242 213 268 227 255 234 290
(23.6) (3.37) (6.70) (28.2) (15.5) (52.9) (8.61) (13.9) (8.61) (17.9)

Ability measures
Cognitive 45.7 48.4 47.7 47.1 70.6 70.8 59.5 59.3 77.9 77.4
Non-cognitive -0.35 -0.13 0.02 0.07 -0.12 -0.10 0.25 0.29 0.32 0.30

π(k,d) 0.15 <0.01 0.25 0.04 0.06 0.01 0.18 0.15 0.05 0.13

Notes: The tables in panel (a) and (b) present (transformed) key parameter estimates from our
model, with bootstrapped standard errors (500 WLBS replications) in parentheses. The returns are in
log-differences and are simply the within-type difference between graduate and non-graduate mean log-
wages, µ(k,1)−µ(k,0). The mean wages at 25 are the type-conditional mean log-wages exponentiated
to give weekly wages in GBP, exp[µ(k,d)]. The cognitive and non-cognitive scores are simply the
estimated type-conditional means, and the type proportions are the mean across all men or women of
the posterior probabilities, pi(k), for each type, k.
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Marginal treatment effects. In figure 4 we present the type-conditional wage premi-
ums, plotted against the type-conditional graduation rates. Presenting our results in this
fashion makes them comparable to the MTE of Heckman and Vytlacil (2005). The MTE
is defined by Heckman and Vytlacil (2005, p. 678) as

∆MT E(x,uD) ≡ E[w1 −w0|X = x,UD = uD],

where X are observed and and uD are unobserved components in the decision to attend
university. In our setup, a young person’s type captures equivalent variation to X and
uD in Heckman and Vytlacil (2005). Therefore, our type-conditional wage premium,
E[w1 −w0|k] = ATE(k), is arguably analogous to the MTE. However, the MTE is usually
presented ordered by uD, not by the untreated outcome as we have done. The equivalent
of ordering by uD in our setup is to order types by Pr(d = 1|k), the type-conditional
graduation rate. A strength of our framework is the flexibility in the way we model
outcomes and measurements, allowing our MTE analogue to vary equally flexibly.

Evidence of non-linearity There is clear evidence of non-linearity in our results. Ob-
taining the combination of: (i) returns that are increasing in both cognitive and non-
cognitive abilities for at least part of their distribution; while (ii) not (monotonically) in-
creasing throughout their distribution, would not have been possible with a linear model.
However, due to the correlation between cognitive and non-cognitive skills, and the appar-
ently rather haphazard locations of the types (they do not lie nicely on a grid), determining
the source of the non-linearity is difficult. It could be due to non-linearities in the returns
to either component — perhaps having higher non-cognitive ability increases returns at
the lower end of the distribution, while the opposite is true at the upper end — or it
could be due to interactions between the components, or both. Investigating the source
of these non-linearities is beyond the scope of this paper.

5.4 Aggregate results

Aggregate results are not a key focus of this paper, which is primarily concerned with
estimating heterogeneous returns across people with different levels of prior ability. How-
ever, it is still interesting to place our results in the context of previous work, which has
generally focused on aggregate returns. In appendix C we show how to aggregate across
types to obtain estimates of the average returns across the whole population (ATE) and
across only those who chose to attend university (ATT ). These estimates are in panel
(a) of table 5, along with standard ordinary least squares (OLS), all estimated from our
model with K = 5. The OLS estimates calculated using our formula (bOLS) are identical
to those obtained from an OLS regression of log-wages on education displayed in table F5
(column 1).
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Figure 4: Returns by graduation rate

(a) Females

(b) Males

Notes: Panels (a) and (b) plot the type-conditional returns to a degree, E[w1 −w0|k] against the type-
conditional graduation rates, Pr(d = 1|k). The type-conditional return for type-1 males is omitted
from panel (b).
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Table 5: Aggregate results and comparison with standard estimators (K = 5)

(a) Aggregate estimates

Male Female
ATE ATT bOLS BOLS ATE ATT bOLS BOLS

0.137 0.162 0.220 0.058 0.230 0.227 0.325 0.098
(0.060) (0.053) (0.042) (0.031) (0.038) (0.042) (0.033) (0.026)

(b) Weights in OLS bias (equation 5)

Male Female
Type k = 1 2 3 4 5 1 2 3 4 5

Weights -0.224 -0.252 -0.063 0.212 0.328 -0.030 -0.509 -0.037 0.259 0.316
(0.197) (0.158) (0.183) (0.204) (0.210) (0.097) (0.096) (0.018) (0.090) (0.086)

Notes: Panel (a) — The values in the table are calculated using the formulas in appendix C. ATE and
ATT are average treatment effects and average treatment on the treated. bOLS is the OLS estimator, and
our calculated value coincides exactly with the coefficient in a regression of wages on schooling. BOLS is
the bias on this estimate versus the “true” ATT. Panel (b) contains the weights used in the formula to
calculate the OLS bias. Bootstrapped standard errors (500 WLBS samples) are in parentheses.

Our ATE and ATT estimates are broadly similar to the OLS estimates on our data, and
to estimates of other authors on UK data from a similar period.30 Comparing our model
estimates with the OLS and IV estimates using our data raises a number of points worth
noting. First, the OLS estimates are broadly similar to the model estimates, though they
are slightly biased relative to ATT estimates. In appendix C we derive a formula for the
standard OLS estimator of the return to a degree (without controls), bOLS , showing how
the OLS estimator is the ATT plus a bias term, BOLS . We reproduce the formula for the
bias here.

BOLS =
∑
k

[π(k |d = 1)−π(k |d = 0)]︸ ︷︷ ︸
weights

E[w0 |k] (5)

Panel (b) of table 5 contains the BOLS weights estimated when K = 5. Some of these
weights are not small, and the relatively small bias on both male and female OLS estimates
appears to be due to chance: large positive and negative weights cancel each other out.

5.5 Comparing returns: prior ability versus university

Returning to the results in table 4, we can compare the effects of a low-ability individual
graduating from university, with the effects of a (hypothetical) increase in their human
capital. The low returns for type 1 of both genders mean they are not a good candidate
for such an experiment. However, an interesting comparison involves the wages of a type

30Blundell et al. (2000) find wage returns of 17% for men and 37% for women at age 33 using data on
a cohort born in 1958.
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2 graduate with those of a type 5 (the highest “ability” as measured by wages) non-
graduate. For men, type 2 are better off (in wage terms)31 graduating from university
than (hypothetically) increasing their prior ability to the level of the highest ability type
(and not attending university). For women, type 2 would earn about the same in either
counterfactual. This emphasises how high the wage returns are to a university degree,
even for some lower ability young people.

Variance decomposition. The final exercise we perform with the aid of our model is
to decompose the variance of wages into three parts:

“within” education groups, due to differences in prior ability;

“between” education groups, due to differences in education;

“unexplained” due to differences in individuals other than education and ability.

Formally, the decomposition is

V(w) = E[V(E[w |θ,d] |d)]︸ ︷︷ ︸
“within”

+V(E[w |d])︸ ︷︷ ︸
“between”

+E[V(w |θ,d)]︸ ︷︷ ︸
“unexplained”

(6)

which allows us to compare the contributions of prior ability and of the returns to uni-
versity to wage inequality. The results are in table 6. The majority of the variance in
wages is not explained by our model. However, the contribution of the graduate wage
premium (“between”) to wage inequality is much larger than that of prior ability for both
men and women. For women, it is particularly striking, explaining over 23% of the total
variance in wages. These findings reinforce the analysis at the end of section 5.3 showing
the wage gain from graduating for a low-ability young person (type 2) are equivalent to
(hypothetically) being a non-graduate of the highest ability (type 5).

31Here we are abstracting from the costs (both pecuniary and non-pecuniary) of graduating from
university. These costs, especially the non-pecuniary or “psychic” costs, are likely decreasing in human
capital and may be prohibitively high for some low ability young people.
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Table 6: Decomposing the variance of log-wages

Male Female
V % V %

Within (θ) 0.009 3.3 0.014 6.1

Between (d) 0.024 9.2 0.053 23.1

Unexplained 0.229 87.5 0.162 70.7

Total 0.262 100 0.229 100

6 Conclusion

In this paper we have presented a framework designed to separately estimate the effects
of ability and higher education on wages. We incorporate insights from the literatures on
both human capital formation and the importance of non-cognitive as well as cognitive
skills. Our model therefore resembles those in the literature on human capital, but one of
our key innovations is a novel nonparametric identification strategy. Although we are not
the first to show non-parametric identification, our approach requires fewer measurements
of prior ability than the current leading approaches in the literature. We are also the first
to take an important next step, estimating our model without imposing linearity in wages
nor in measurements.

We demonstrate our method in an application on data from a longitudinal cohort study
in the UK. We show that a measure of cognitive ability is not sufficient to fully capture
variation in (multidimensional) ability across individuals before attending university, des-
pite strong positive correlation between cognitive and non-cognitive abilities. When we
estimate our preferred specification, which includes measures of both cognitive and non-
cognitive abilities, we find important non-linearities in the effects of prior ability on wages,
and on the returns to a university degree. The returns to university are also shown to be
more important than the returns to prior ability: a low ability young person is better off
as a low-ability graduate than they would be if instead they were to increase their ability
to match their highest-ability peers. The large impact of university on wages across the
ability distribution leads to another of our main results: the contribution of the graduate
wage premium to inequality is three to four times larger than the contribution of ability.

The implications of our findings are somewhat unsettling. We are not the first to highlight
the contribution of (non-universal) higher education to wage inequality (Autor, 2014).
According to our results, sending everyone (or no-one) to university would be preferable
to the current situation. Moreover, given we find that returns are generally increasing
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in prior ability, no higher education is preferred (in terms of inequality) to universal
higher education. This is clearly not a policy that many would (or should) support.
However, finding ways to mitigate the contributions of higher education to inequality
while preserving its many other benefits, both to the individual and society, is vital.

There are also a number of caveats to mention regarding the work in this paper. First,
the framework used in this paper (and its sibling in Cassagneau-Francis et al. 2021) is
new and needs to be studied in more detail. Second, this is a static, statistical analysis
and so does not allow for any equilibrium considerations. Also, in our application we only
consider the short term effects of higher education. In future work we plan to expand
the model to allow for earnings over a longer period. Another important task is to study
how the returns to higher education have evolved over recent decades. Estimating our
framework on a more recent cohort would allow such an analysis.
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A Linear model

A common assumption made to help identify and estimate models like the one in this
paper is that both wages and measurements are linear in their components. Then,

wd = µ0
d +µC

d θC +µN
d θN + εd (7)

Mℓ = γ0
ℓ +γC

ℓ θC +γN
ℓ θN + εℓ. (8)

This is the approach taken by Cunha and Heckman (2007a,b), henceforth CH, for example.

Assumption (Independent errors). The error terms, εd and εℓ are independent of θ and
each other, and have means equal to zero.

Under this assumption we obtain the classical measurement error model, and OLS estim-
ates using M to proxy θ as in the following equation,

wd = δ0
d +M ′δd +ηd (9)

where δ = (δ1, ..., δL), are biased as

E[ηdMℓ] = E[(ϵd −ε′δd)(γ0
ℓ +γC

ℓ θC +γN
ℓ θN + εℓ)]

= δdE[ε2
ℓ ] ̸= 0,

where ε = (ε1, ..., εL), and the first equality is obtained by combining equations (7) and
(8) to match equation (9) and equating the error terms. The second equality follows from
assumption A. Therefore, we cannot recover θ nor any of the parameters in equations (7)
and (8) via OLS. However, models with classical measurement error are well studied in
economics and statistics. When w and M are not jointly normal, Reiersol (1950) shows
that the parameters in equations (7) and (8) are identified, up to some normalisations.
More recent work has shown how to identify the distribution of θ and the error terms
using a theorem due to Kotlarski (1967).32 Bonhomme and Robin (2009, 2010) generalise
these results to allow for the non-parametric identification and estimation of such factor
models.

B Nonparametric identification proof

We first state the necessary conditions under which our model is identified.

Assumption 1 (Measurements and wages). Measurements, wages and z are independent
conditional on type and education.33

32See Carneiro et al. (2003) for more details.
33Measurements need not be independent of each other even conditional on type.
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Assumption 2 (No empty cells). π(k,0,d) ̸= 0 for all d and for all k.

Assumption 2 ensures that for at least one value of the instrument, arbitrarily set to zero,
young people of all endowments of prior ability have positive probability of both attending
and not attending university.

Assumption 3 (Linear independence).
[
fM (M |1) · · · fM (M |k) · · · fM (M |K)

]
and,

for all d,
[
fw(w|1,d) · · · fw(w|k,d) · · · fw(w|K,d)

]
are linearly independent systems.

Assumption 3 means we cannot identify any points of support in the distribution of human
capital for which the associated conditional measurement and / or wage distribution can
be formed by a linear combination of the distributions corresponding to other points of
support. This is analogous to the rank condition in ordinary least squares.

Assumption 4 (First stage). π(k,1,d)
π(k,0,d) ̸= π(k′,1,d)

π(k′,0,d) for all d, for all k ̸= k′.

Assumption 4 ensures that exposure to the instrument leads to different sized shifts in
university attendance for individuals with different levels of prior ability. It is analogous
to the rank condition in IV estimation.

Assumption 5 (Measurements independent of education). For all types k and all meas-
urements Mℓ, fℓ(M ℓ|k,d) = fℓ(M ℓ|k).

Assumption 5 allows us to label groups consistently across education levels. There are
other assumptions that we could make to achieve the same aim. However, it seems reas-
onable to assume that conditional on ability, our measurements of ability are independent
of later education.

Assumption 6 (Discrete wages and measurements). The distributions of wages and
measurements have discrete support.

Assumption 6 is not strictly necessary but it is a relatively innocuous assumption that
greatly simplifies the exposition. We could discretise continuous distributions by project-
ing them onto some functional basis, i.e. (M ,w) 7→ p(z,d,M ,w), and it is straightforward
to adapt the proof.

Theorem 1 (Identification). Under assumptions 1-6 plus the conditional exclusion re-
striction on the instrument, π(k,z,d), fM (M |k) =∏

ℓ fℓ(Mℓ|k), and fw(w|k,d) are non-
parameterically identified.

Proof. The proof contains three steps.
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Step 1: Constructing matrices

The probability of observing an individual with variables (zi,di,mi,wi) in our model
writes

p(zi,di,mi,wi) =
∑
k

π(k,zi,di)fm(mi|k)fw(wi|k). (10)

Under assumption 6, fm(·|k) and fw(·|k) are probability mass functions (pmfs), which we
place in matrices along with the observable probabilities, p(zi,di,mi,wi), and the joint
type-instrument-treatment probabilities, π(k,zi,di). The matrices (one per z,d value pair)
containing the observed data shares,

P (z,d)
nm×nw

≡
[
p(z,d,m,w)

]
m×w

are indexed by measurement down their rows, and by wages across their columns. It has
dimension nm × nw. The matrix of type-instrument-treatment probabilities for each k,z

pair,
D(z,d)

K×K
≡ diag

[
π(k,z,d)

]
k×k

is a diagonal matrix with dimension K, containing the type-instrument-treatment prob-
abilities, π(k,z,d), on its diagonal. Finally, there are the two matrices containing the
measurement and wage pmfs

F1
nm×K

≡
[
fm(m|k)

]
m×k

and F2
nw×K

≡
[
fw(w|k,d)

]
w×k

,

where F1 is indexed by measurement down its rows, F2 by wages down its rows, and both
matrices by type across their columns. Then, nm is the number of points of support in
the (discrete) measurement distribution and the number of rows in F1, and nw is the
number of points of support in the (discrete) wage distribution, and the number of rows
in F2. Both matrices have K columns.

For a given z,d, we can write equation (10) in matrix form

P (z,d) = F1D(z,d)F2(d)⊤.
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Step 2: Identifying F1, D(z,d), and F2(d)

For a given d (which we omit to simplify the notation) the following matrices, correspond-
ing to the different values of z,34 share the same algebraic structure35

P (0) = F1D(0)F ⊤
2

P (1) = F1D(1)F ⊤
2

as F1 and F2 are independent of z. Assumption 2 ensures D(0) and D(1) are invertible,
and by assumption 3, the matrices F1 and F2 have full column rank. Therefore P (0) has
rank K and admits a singular value decomposition (SVD)

P (0) = UΣV ⊤,

where U and V are rank-nm and rank-nw unitary matrices. We can partition U =
[
U1 U2

]
and V =

[
V1 V2

]
so that

P (0) = U1Σ1V ⊤
1 , (11)

where Σ1 contains the K non-zero singular values of P (0) on its diagonal. U1 is nm ×K,
V1 is nw × K, and Σ1 is K × K. From the components of the SVD in equation (11), we
can construct the matrices W1 = Σ− 1

2
1 U⊤

1 and W2 = Σ− 1
2

1 V ⊤
1 . Then, applying W1 and W2

to P (0) as follows, we obtain Q and Q−1

W1P (0)W ⊤
2 = Σ− 1

2
1 U⊤

1 U1Σ1V ⊤
1 V1Σ− 1

2
1 = IK

= W1F1︸ ︷︷ ︸
Q

D(0)F ⊤
2 W ⊤

2︸ ︷︷ ︸
Q−1

= QQ−1 = IK .

We can similarly apply W1 and W2 to P (1) := P (1,d), to obtain

W1P (1)W ⊤
2 = W1F1︸ ︷︷ ︸

Q

D(1)F ⊤
2 W ⊤

2︸ ︷︷ ︸=
D(0)−1Q−1

QD(1)D(0)−1Q−1.

The non-zero (diagonal) entries of

D(1)D(0)−1 = diag
[

π(k,1,d)
π(k,0,d)

]
K

are the (unique) eigenvalues of W1P (1)W ⊤
2 , which is derived using only the observable

matrices P(1) and P(0). Q contains eigenvectors of W1P (1)W ⊤
2 , though these eigenvectors

are only determined up to a multiplicative constant.
34This example is for a binary z, but the proof is easily extended to any discrete, finite z.
35By this we mean they can be decomposed into a trio of matrices, where the first and third matrices

are identical (F1 and F ⊤
2 ) and the middle matrix is diagonal.
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To pin down these eigenvectors, recall that U is unitary and hence

U⊤
2 P (0) = U⊤

2 U1Σ1V ⊤
1 = 0(nm−K)×nw

which implies
U⊤

2 P (0) = U⊤
2 F1D(0)F ⊤

2 = 0(nm−K)×nw
. (12)

By assumptions 2 and 3, D(0)F ⊤
2 has full row rank, so equation (12) implies U⊤

2 F1 =
0(nm−K)×nw

. Now define Q̂ as some matrix of eigenvectors of W1P (1)W ⊤
2 , such that

there is a diagonal matrix ∆ which satisfies Q̂ = Q∆ = Σ− 1
2

1 U⊤
1 F1∆, and Σ

1
2
1 Q̂ = U⊤

1 F1∆.
Therefore  Σ

1
2
1 Q̂

0(nm−K)×nw

= U⊤F1∆, (13)

and

U1Σ
1
2
1 Q̂ = U

 Σ
1
2
1 Q̂

0(nm−K)×nw

= UU⊤F1∆ = F1∆. (14)

Then F1∆ = U1Σ
1
2
1 Q̂ is identified, and also we have that F1 = U1Σ

1
2
1 Q̂∆−1. Noticing the

rows of F1 must sum to one (as each column is a probability distribution), we can find
the non-zero (diagonal) elements of ∆ using

(∆1, ...,∆K) = (1, ...,1)U1Σ
1
2
1 Q̂, (15)

which identifies ∆ and hence F1.

Finally, ∆Q̂−1 = Q−1 = D(0)F ⊤
2 V1Σ

1
2
1 , and hence Q−1Σ 1

2 = D(0)F ⊤
2 V1. V is an unitary

matrix, so P (0)V2 = 0, using that V ⊤
1 V2 = 0, and F1D(0) has rank K, implying F ⊤

2 V2 =
0nw×(nm−K). Then, following similar steps to before,

Q−1Σ
1
2 V ⊤

1 =
(
D(0)F ⊤

2 V1 0nw×(nm−K)
)V ⊤

1
V ⊤

2


=
(
D(0)F ⊤

2 V1 D(0)F ⊤
2 V2

)
V ⊤

= D(0)F ⊤
2 V V ⊤

= D(0)F ⊤
2 . (16)

The rows of F2 also sum to one, so D(0) and hence F2 are identified from equation (16),
following a similar argument the one used above to identify ∆ and F1. And D(1) is known
now we know D(0) and D(1)D(0)−1.
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Step 3: Correct labels across d.

We need to ensure that the labels on types are consistent across treatments (i.e. values
of d). We use that F1 is independent of d to ensure that each type is labelled the same
across all treatments.

C Treatment effects in our framework

As in Cassagneau-Francis et al. (2021), here we show that we can identify some of the
usual treatment effect (TE) estimands and their associated biases using our framework.

Average treatment effect. We can aggregate over types to obtain the ATE in (3).

ATE ≡ E[w1 −w0] =
∑
k

π(k)ATE(k)

where π(k) =∑
z,d π(k,z,d), the proportion of young people of type k.

Average treatment on the treated. We can also aggregate over those who attend
university within each type to obtain the ATT.

ATT ≡ E[w1 −w0 |d = 1] =
∑
k

π(k |d = 1)ATE(k)

where π(k |d = 1) =
∑

z π(k,z,1)∑
k,z π(k,z,1) , the proportion of individuals of type k among those who

attend university.

Ordinary least squares (OLS). We can also calculate the OLS estimator, bOLS ,
within our framework, and decompose this estimand into an ATT term and an “OLS
bias” term, BOLS .

bOLS = Cov(w,d)
V(d) = E[w1 |d = 1]−E[w0 |d = 0]

=
∑
k

π(k |d = 1)E[w1 |k]−π(k |d = 0)E[w0 |k]

= ATT +BOLS

where
BOLS =

∑
k

[π(k |d = 1)−π(k |d = 0)]E[w0 |k]
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The OLS bias disappears only if (i) π(k |d = 1) = π(k |d = 0) for all values of k; or (ii)
E[w0 |k] = E[w0 |k′] for all k ̸= k′. The first equality is unlikely to hold in our application
as those with higher prior are more likely to attend university, and hence the proportion of
those with high prior is likely to be larger among graduates. This is the issue of selection
on ability that was mentioned earlier. The second equality is also unlikely to hold, as
young people with higher prior ability are generally more productive workers and can
hence command a higher wage.

IV and LATE. Finally, we can perform a similar exercise to decompose the standard
(two-stage least squares) IV estimator for a binary instrument, into a LATE term which
corresponds to Imbens and Angrist (1994)’s local average treatment effect, and an “IV
bias” term, BIV .

The two-stage least squares estimator of the effect of university on wages (without con-
trols) is

bIV = Cov(w,z)
Cov(d,z) = E[w|z = 1]−E[w|z = 0]

E[d|z = 1]−E[d|z = 0]
In our framework, the denominator of bIV is

E[d|z = 1]−E[d|z = 0] =
∑
k

[π(k,d = 1 |z = 1)−π(k,d = 1 |z = 0)] .

The numerator has a more interesting decomposition, such that we can write

bIV = LATE+BIV

where
LATE =

∑
k

π(k,d = 1|z = 1)−π(k,d = 1|z = 0)∑
k [π(k,d = 1|z = 1)−π(k,d = 1|z = 0)]ATE(k), (17)

and
BIV =

∑
k

π(k|z = 1)−π(k|z = 0)∑
k [π(k,d = 1|z = 1)−π(k,d = 1|z = 0)] E[w0 |k],

with
π(k,d|z) = π(k,z,d)∑

k,d π(k,z,d) and π(k|z) =
∑
d

π(k,d|z).

Therefore the LATE estimator of Imbens and Angrist (1994) is a weighted average of
type-specific ATEs in our framework, with weights corresponding to the proportion of
compliers36 with that level of prior ability. Note the similarity between our decomposition
of the LATE in equation (17) and Heckman and Vytlacil (1999, 2005, 2007)’s marginal

36Those who are induced into attending university by the instrument.
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treatment effect (MTE):37

LATE =
∫ φ(1)
φ(0) ∆MTE(ν)dν

φ(1)−φ(0) (18)

where
∆MTE(ν) = E [w1 −w0 |νi = ν] ,

and φ(z) and ν are the observed and unobserved components of the non-pecuniary cost
of attending university. The formula in (18) is a weighted average of the returns to
university over those induced to attend by the instrument, though this average is over the
distribution of (unspecified) unobserved costs, rather than (imperfectly observed) prior
ability. Our framework is more flexible in one sense as it allows correlation between
outcomes (wd) and unobserved costs through latent types.

D EM algorithm details

The EM algorithm iterates back and forth over the following two steps:

E-step.

The E-step updates the posterior type probabilities, pi(k|Ω):

pi

(
k|Ω̂(s)

)
≡

p̂
(s)
k ℓ

(
Ω̂(s);Mi,wi, zi,di,k

)
∑K

k=1 p̂
(s)
k ℓ

(
Ω̂(s);Mi,wi, zi,di,k

) , (19)

where Ω = {π(z,d|k),αj(k),ωj(k),µ(k,d),σ(d)}, over all values such that z ∈ {0,1}, d ∈
{0,1}, k ∈ {1, ...,K}, and j ∈ {C,N}.

M-step.

While in the M-step we update the components of Ω in the (s+1)-th iteration, using the
estimates from the s-th iteration.

• Update αj(k),ωj(k).

1. Update αj(k) as the weighted mean test score, using posterior probabilities as
weights (for each type)

αj(k)(s+1) ≡
∑

i pi

(
k|Ω̂(s)

)
Mji∑

i pi

(
k|Ω̂(s)

) (20)

2. Then ωj(k) is updated as the weighted root-mean-square error, using posteriors
37This formula is adapted from the presentation in French and Taber (2011)’s excellent survey on the

identification of models of the labour market.
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as weights

ωj(k)(s+1) ≡

√√√√ 1
N

N∑
i=1

pi

(
k|Ω̂(s)

)(
Mji −αj(k)(s+1)

)2
(21)

• Update µ(k,d), σ(k,d).

1. Again use weighted means, with weights pi(k|Ω̂(s)) to update µ(k,d):

µ(k,d)(s+1) ≡
∑

i:di=d pi

(
k|Ω̂(s)

)
wi∑

i:di=d pi

(
k|Ω̂(s)

) (22)

2. And use the updated µ(k,d) to update σ(d):

σ(d)(s+1) ≡

√√√√√√√
∑

k
∑

i:di=d pi

(
k|Ω̂(s)

)(
wi −µ

(s+1)
d (k)

)2

∑
k
∑

i:di=d pi

(
k|Ω̂(s)

) (23)

• Finally, we sum posterior probabilities by k, z, and d to obtain π(k,z,d),

π(k,z,d)(s+1) ≡ 1
N

K∑
k=1

∑
i∈I(z,d)

pi(k|Ω̂(s)), (24)

where I(z,d) = {i : zi = z, di = d}.

Iterations stop when the algorithm converges, i.e. when the increase in likelihood between
iterations is below a threshold:

L(Ω(s);M ,w,z,d)−L(Ω(s−1);M ,w,z,d) < δ, (25)

for some δ > 0 chosen by the econometrician.

E Context and data
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Figure E1: Timeline of educational decisions

Year 11 (age 15/16) • Apply for sixth form
End of year 11 • Sit GCSEs & legally able

to leave school
Year 13 (age 17/18) • Apply to universities &

receive “conditional” offers
End of year 13 • Sit A-levels

Summer after year 13 • Receive A-levels results &
confirm place at university

Table E1: Balancing checks for instrument validity

Dependent variable:
Parental

Income Social class Health Urban White
(1) (2) (3) (4) (5)

Female −0.223∗∗ −0.188∗ 0.245∗∗∗ 0.084 −0.008
(0.097) (0.100) (0.094) (0.092) (0.008)

Cognitive 0.016∗∗∗ 0.024∗∗∗ −0.005 0.004 0.002∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.0003)

Non-cognitive 0.236∗∗∗ 0.250∗∗∗ −0.180∗∗ 0.047 0.004
(0.083) (0.088) (0.080) (0.078) (0.007)

Leaving home...
matters somewhat −0.070 −0.047 0.236∗ −0.133 0.006

(0.128) (0.131) (0.123) (0.120) (0.011)

doesn’t matter −0.185 −0.126 0.069 −0.180 0.009
(0.137) (0.139) (0.131) (0.129) (0.012)

Observations 1,398 1,418 1,870 1,822 1,816
R2 0.023
Adjusted R2 0.020
Residual Std. Error 0.170
F Statistic 8.452∗∗∗

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
In columns (1–4) the dependent variables are categorical and ordered logit was used to regress
the dependent variable on the covariates, using the polr function from the R package MASS.
In column (5), as the dependent variable is binary we estimate a linear probability model using
function lm from the R stats package.
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F Results

F.1 Choosing K

F.2 Single cognitive measure

F.3 Cognitive and non-cognitive measures

Table F1: Distribution parameter estimates (male, cognitive and non-cognitive
measures)

K = 5
Type(k) = 1 2 3 4 5
αC(k) 45.7 47.6 70.7 59.4 77.6
ωC(k) 8.99 13.6 4.78 9.06 6.60
αN (k) −0.35 0.03 −0.11 0.27 0.31
ωN (k) 0.71 0.37 0.60 0.46 0.50
d = 0 1 0 1 0 1 0 1 0 1
µ(k,d) 5.33 5.35 5.33 5.49 5.36 5.59 5.43 5.54 5.46 5.67
σ(d) 0.46 0.52 0.46 0.52 0.46 0.52 0.46 0.52 0.46 0.52

Table F2: Distribution parameter estimates (female, cognitive and non-cognitive
measures)

K = 5
Type(k) = 1 2 3 4 5
αC(k) 47.9 47.1 67.9 54.7 77.9
ωC(k) 9.25 12.6 4.86 7.88 6.77
αN (k) −0.16 −0.02 0.11 0.42 0.33
ωN (k) 1.21 0.52 0.54 0.56 0.51
d = 0 1 0 1 0 1 0 1 0 1
µ(k,d) 4.96 5.11 5.02 5.23 5.04 5.32 5.09 5.36 5.26 5.42
σ(d) 0.52 0.42 0.52 0.42 0.52 0.42 0.52 0.42 0.52 0.42

F.4 OLS estimates

In table F5, we present ordinary least squares (OLS, columns 1–4) and two-stage least
squares (2SLS, columns 5 and 6) estimates of the returns to a university degree, across a
range of specifications. The baseline regression equation is

wi = β0 +µddi +γCMC
i +γN MN

i +X ′
iβ1 + εi
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Figure F1: Likelihood criteria: single cognitive measure

(a) Male

(b) Female
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Figure F2: Posterior probabilities: single cognitive measure

(a) Male

(b) Female
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Figure F3: Likelihood criteria: cognitive and non-cognitive measures

(a) Male

(b) Female
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Figure F4: Posterior probabilities: cognitive and non-cognitive measures

(a) Male

(b) Female
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Figure F5: Results across K (single cognitive measure)

(a) Male

(b) Female

56



Figure F6: Group sizes and locations in cognitive-noncognitive space
(K = 3, cognitive measures only)

(a) Male

(b) Female

Notes: The above plots display the mean abilities (circle locations) and sizes (circle sizes and labels)
for each type, split by gender (panels) and education (colour). Panel (a) contains men, and panel (b)
women. Blue circles represent graduates and red non-graduates. The size of each type-education group
is labelled, along with each type.
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Figure F7: ATEs / ATTs across K (cognitive and noncognitive measures)

(a) Male

(b) Female
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Table F3: π(k,z,d) parameter estimates (male, cognitive and non-cognitive)

K = 5
Type(k) = 1 2 3 4 5
d = 0 1 0 1 0 1 0 1 0 1
Matters very much 0.004 < 0.001 0.045 0.004 0.007 < 0.001 0.031 0.028 < 0.001 0.022
Matters somewhat 0.072 < 0.001 0.119 0.016 0.034 0.004 0.074 0.075 0.015 0.062
Doesn’t matter 0.077 < 0.001 0.086 0.016 0.015 0.002 0.072 0.046 0.032 0.042

Table F4: π(k,z,d) parameter estimates (female, cognitive and non-cognitive)

K = 5
Type(k) = 1 2 3 4 5
d = 0 1 0 1 0 1 0 1 0 1
Matters very much < 0.001 < 0.001 0.080 0.003 0.019 0.008 0.042 0.027 0.009 0.034
Matters somewhat 0.023 < 0.001 0.175 0.007 0.053 0.015 0.065 0.067 0.027 0.046
Doesn’t matter < 0.001 < 0.001 0.161 0.006 0.041 0.008 0.028 0.026 0.007 0.021

where wi is log weekly wage, di is an indicator for univeristy attendance, MC
i and MN

i are
cognitive and non-cognitive test scores, Xi contains controls for parental income, location
type (city/town/countryside), region, and whether the young person is white, and εi is a
random error term.

We split the sample by gender and present the results for men in panel (a) and women in
panel (b). The first column of table F5 presents the results from the most basic specific-
ation, an OLS regression log wages on the degree indicator without any controls. Moving
across the columns we add controls to the specification, starting with cognitive in the
second column, and non-cognitive (column 3), and then all controls (column 4). Adding
controls generally decreases the estimates of the returns to a degree, as one might expect
given that wage and university attendance are both positively correlated with prior abil-
ity. There is one exception: the coefficient on university attendance when all controls are
included for males is larger than with just cognitive and non-cognitive test scores. Finally
we use 2SLS with the desire to leave home as an instrument for university attendance,
first without (column 5) and then with controls (column 6). The 2SLS estimates are
slightly larger than our preferred OLS estimates for men, and much larger for women,
suggesting either the strong exclusion restriction required for 2SLS does not hold, or the
compliers who are induced to attend university by the instrument have unusually high
returns (interpreting our 2SLS estimate as a LATE). Recall our main analysis does not
require the same exogeneity of the instrument as 2SLS.

Our estimates are broadly in line with previous estimates of the returns to university from
the UK during this period. Blundell et al. (2000) estimate a similar equation using OLS
with detailed controls on data from a UK cohort born 12 years earlier (in 1958), and using
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wages observed later in the life-cycle at age 33. They estimate returns of around 17% for
men and 37% for women. We will return to our OLS and 2SLS estimates in section 5
when we use our framework to decompose these estimates using the formulas in section
C.
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Table F5: OLS and 2SLS estimates of the wage returns to a degree

(a) Male

Dependent variable: log weekly wage

(1) (2) (3) (4) (5) (6)
Degree 0.220∗∗∗ 0.181∗∗∗ 0.170∗∗∗ 0.178∗∗∗ 0.207 0.248

(0.038) (0.041) (0.041) (0.054) (0.470) (0.582)

Cognitive 0.003∗∗∗ 0.003∗∗ 0.002 0.002
(0.001) (0.001) (0.002) (0.006)

Non-cognitive 0.057∗ 0.075∗ 0.046
(0.033) (0.045) (0.083)

Add. controls ✓
Instrument ✓ ✓
Observations 745 745 745 514 745 745
R2 0.042 0.052 0.056 0.096 0.042 0.052
Adjusted R2 0.041 0.050 0.052 0.041 0.041 0.048
Residual se 0.487 0.485 0.484 0.510 0.487 0.486

(b) Female

Dependent variable: log weekly wage

(1) (2) (3) (4) (5) (6)
Degree 0.325∗∗∗ 0.291∗∗∗ 0.277∗∗∗ 0.247∗∗∗ 0.530 0.471

(0.033) (0.035) (0.035) (0.043) (0.338) (0.465)

Cognitive 0.003∗∗∗ 0.003∗∗∗ 0.004∗∗∗ 0.001
(0.001) (0.001) (0.001) (0.004)

Non-cognitive 0.068∗∗∗ 0.034 0.047
(0.025) (0.030) (0.056)

Add. controls ✓
Instrument ✓ ✓
Observations 1,131 1,131 1,131 809 1,131 1,131
R2 0.078 0.086 0.092 0.150 0.047 0.067
Adjusted R2 0.078 0.084 0.089 0.118 0.046 0.065
Residual se 0.494 0.492 0.491 0.481 0.502 0.497

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Specification (1) regresses log-wage on an indicator for a degree
and a constant. (2) and (3) include cognitive and noncognitive measures. Then (4) also includes parental
income, location type (city/town/countryside), region, and whether the young person is white. Columns
(5) and (6) instrument the degree indicator with our instrument.
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